Development of a multi-omic clinical decision platform to guide personalized therapy
开发多组学临床决策平台来指导个性化治疗
基本信息
- 批准号:10624792
- 负责人:
- 金额:$ 52.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-06 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAddressAffectAlgorithmsAlzheimer&aposs DiseaseAnimal ModelAreaBig DataBiological AssayBiological SciencesBone MarrowClassificationClinicalClinical DataClinical TrialsClonalityCollaborationsComputer ModelsDNA Sequence AlterationDataDevelopmentDiagnosisDiseaseDrug resistanceEmploymentEventGenesGeneticGenetic DiseasesGenetic HeterogeneityGenomicsHealthHematopoietic NeoplasmsHeterogeneityIndustryInflammatory Bowel DiseasesIntakeLearningMachine LearningMalignant NeoplasmsMeasurementModelingMonitorMultiple MyelomaMusPatient-Focused OutcomesPatientsPeripheral arterial diseasePersonsPharmaceutical PreparationsPharmacotherapyPhysiciansPlasma CellsPrecision therapeuticsPrediction of Response to TherapyPrimary NeoplasmRNARecommendationRefractoryRelapseResearchResearch PrioritySamplingSchizophreniaScientistSelection for TreatmentsSolid NeoplasmStreamSuggestionSystems BiologySystems IntegrationTechnologyTestingTherapeuticTimeTranslatingcancer geneticsclinic readyclinical decision supportclinically actionablecomputational pipelinescomputerized toolsdata integrationdesigndisorder subtypedrug repurposingefficacy testinggenomic datagenomic profilesimprovedimproved outcomein vivoindividual patientinsightlongitudinal designmedical schoolsmouse modelmultidisciplinarymultiple omicsnext generationnovelnovel therapeutic interventionnovel therapeuticspatient derived xenograft modelpersonalized medicinepersonalized therapeuticpilot trialpoint of careprecision medicinepredictive toolsprofiles in patientsprospectiverelapse patientsrisk stratificationstandard of carestatistical and machine learningsupport toolstargeted sequencingtooltranscriptome sequencingtranscriptomicstreatment planningtreatment responsetumortumor xenograft
项目摘要
PROJECT SUMMARY
The era of “big data” has opened the door for genomic and systems biology approaches to be applied to
current challenges in life sciences and precision medicine. One critical challenge in these areas is how to
prioritize research findings to validate and identify actionable insights that can translate into better outcomes
for patients. In this regard, we have assembled a multidisciplinary group of scientists and physicians from
academia and industry with a focus on creating discovery pipelines that combine high-throughput profiling
technologies with advanced statistical and machine learning approaches to generate predictive tools that
enable us to move rapidly from big data to better diagnoses and treatment. In this regard, we propose to apply
these approaches to develop a computational clinical decision tool that will improve disease forecasting and
treatment plans for Multiple Myeloma (MM), an incurable cancer that originates in bone marrow plasma cells
and affects more than 30,000 patients a year. Though there have been some advances in the number and
diversity of available therapeutic options for these patients, relapse remains inevitable, and MM ultimately
remains a terminal diagnosis. The clinical assay and computational pipeline developed in this project will
combine a targeted sequencing panel specific to myeloma patients and clonality estimates with RNA-
sequencing and drug repurposing to expand therapeutic options for MM patients. We will develop this unique
tool with the following specific aims: (1) Develop an integrated genomic clinical decision tool to guide precision
treatment of MM and validate therapy recommendations using PDX profiling, and (2) Validate MM precision
medicine platform in a prospective clinical trial and generate clone-specific treatment recommendations. To
achieve these objectives, we will integrate a Cancer Genetic, Inc.'s FOCUS::Myeloma panel, a targeted panel
designed to specifically interrogateall the genes and copy number alterations commonly altered in myeloma,
and into a computational drug selection pipeline that utilizes RNA-sequencing data
and drug repurposing algorithms to generate therapeutic recommendations matched to a patient's unique
disease profile. These recommendations will be validated in mouse avatars of myeloma to confirm and refine
drug predictions. We will implement our assay in a prospective clinical trial of 100 patients to determine if the
treatment decisions generated by our pipeline achieves an improvement in standard-of-care. Finally, we will
perform clonal modeling on relapsed patients to retrospectively evaluate clone-specific treatment responses.
Completion of these studies will result in a clinic-ready assay and computational tool that will guide MM
precision treatment decisions and inform new therapeutic strategies based on a patient's unique cancer profile.
genomic
clonal
modeling
项目摘要
“大数据”时代为基因组学和系统生物学方法打开了大门,
生命科学和精准医学的当前挑战。这些领域的一个关键挑战是如何
优先考虑研究结果,以验证和确定可转化为更好结果的可操作见解
对患者在这方面,我们召集了一个多学科的科学家和医生小组,
学术界和工业界,重点是创建结合了联合收割机高吞吐量分析的发现管道
技术与先进的统计和机器学习方法,以生成预测工具,
使我们能够迅速从大数据转向更好的诊断和治疗。在这方面,我们建议
这些方法开发了一种计算临床决策工具,将改善疾病预测,
多发性骨髓瘤(MM)的治疗计划,MM是一种起源于骨髓浆细胞的无法治愈的癌症
每年有超过3万名患者受到影响。尽管在数量上有了一些进步,
尽管这些患者的治疗选择多种多样,但复发仍是不可避免的,MM最终
仍然是晚期诊断。本项目中开发的临床分析和计算管道将
联合收割机将骨髓瘤患者特异性靶向测序组和克隆性估计与RNA-
测序和药物再利用,以扩大MM患者的治疗选择。我们将开发这种独特的
该工具具有以下具体目标:(1)开发一个集成的基因组临床决策工具,以指导精确度
治疗MM并使用PDX分析验证治疗建议,以及(2)治疗MM的精确度
在前瞻性临床试验中使用药物平台,并生成克隆特异性治疗建议。到
为了实现这些目标,我们将整合一个癌症遗传公司。的焦点::骨髓瘤小组,一个有针对性的小组
旨在特异性地询问骨髓瘤中常见的所有基因和拷贝数改变,
并进入一个利用RNA测序数据的计算药物选择管道,
和药物再利用算法,以生成与患者的独特
疾病概况这些建议将在骨髓瘤的小鼠化身中进行验证,以确认和完善
药物预测我们将在100名患者的前瞻性临床试验中实施我们的检测方法,以确定是否
我们的管道产生的治疗决定实现了护理标准的提高。最后我们将
对复发患者进行克隆建模,以回顾性评估克隆特异性治疗反应。
这些研究的完成将产生一个临床就绪的测定和计算工具,将指导MM
精确的治疗决策,并根据患者独特的癌症特征制定新的治疗策略。
基因组
克隆
建模
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samir Parekh其他文献
Samir Parekh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samir Parekh', 18)}}的其他基金
Development of a multi-omic clinical decision platform to guide personalized therapy
开发多组学临床决策平台来指导个性化治疗
- 批准号:
9981389 - 财政年份:2020
- 资助金额:
$ 52.75万 - 项目类别:
Development of a multi-omic clinical decision platform to guide personalized therapy
开发多组学临床决策平台来指导个性化治疗
- 批准号:
10703682 - 财政年份:2020
- 资助金额:
$ 52.75万 - 项目类别:
Development of a multi-omic clinical decision platform to guide personalized therapy
开发多组学临床决策平台来指导个性化治疗
- 批准号:
10337223 - 财政年份:2020
- 资助金额:
$ 52.75万 - 项目类别:
Development of a multi-omic clinical decision platform to guide personalized therapy
开发多组学临床决策平台来指导个性化治疗
- 批准号:
10771332 - 财政年份:2020
- 资助金额:
$ 52.75万 - 项目类别:
Epigenomic determinants of clinical outcomes in MCL patients treated on E1405
E1405 治疗的 MCL 患者临床结果的表观基因组决定因素
- 批准号:
8444788 - 财政年份:2013
- 资助金额:
$ 52.75万 - 项目类别:
Epigenomic determinants of clinical outcomes in MCL patients treated on E1405
E1405 治疗的 MCL 患者临床结果的表观基因组决定因素
- 批准号:
8708002 - 财政年份:2013
- 资助金额:
$ 52.75万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 52.75万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 52.75万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 52.75万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 52.75万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 52.75万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 52.75万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 52.75万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 52.75万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 52.75万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 52.75万 - 项目类别:
Research Grant