Data-driven drug discovery: investigating the molecular mechanisms of safety and efficacy

数据驱动的药物发现:研究安全性和有效性的分子机制

基本信息

  • 批准号:
    10625365
  • 负责人:
  • 金额:
    $ 35.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

Project Summary I am proposing a precision pharmacology and pharmacovigilance research program that couples observational data analysis with prospective laboratory experiments to advance drug safety and efficacy. Our ability to collect and store massive amounts of molecular, clinical, and behavioral data has the potential to fundamentally transform translational medicine. It is not difficult to imagine a world where our devices and doctors work together seamlessly to provide personalized guidance and treatment to maximize our health and longevity. And that, in turn, the data generated by these encounters be collected, organized, and analyzed by biomedical researchers to invent the next generation of interventions. However, there are significant challenges prohibiting meaningful progress toward this vision. I have identified four that I plan to address: (1) There is a dearth of pharmacological knowledge for many subpopulations, most notably minorities (non-Whites), women, and children; (2) Observational data, from what is captured by devices to what is collected in medical records, is of dubious validity and value; (3) There is a limited understanding of the molecular mechanisms of drug reactions and drug-drug interactions; (4) There is no clear method of meaningfully sharing patient data while preserving privacy. There is no single solution that will solve all of these challenges. Each will require a unique combination of data science, informatics, and experiments. In the previously funded project, we made significant advancements in the characterization of adverse drug reactions and drug-drug interactions, the molecular modeling of pharmacological pathways, and the application of statistical data mining to electronic health records. I accomplished this by leveraging distinct data sources against each other to focus attention on only those hypotheses that repeatedly replicate under a variety of conditions. I then validated those hypotheses experimentally using animal and cellular models. Challenges 2 and 3 are natural extensions of this previous work, where I will address how to use data for purposes other than what it was collected for (secondary use) and develop new systems models to explain the physiological effects of drug-gene and drug-drug interactions. Challenges 1 and 4 represent new avenues of research where I will address the challenges of pharmacological studies in diverse populations and the increasingly important issue of balancing openness and transparency in science with patients' rights to privacy. The challenges laid out above are significant and, likely, will not be solved in within five years. However, the pursuit of these challenges will generate new knowledge that has the potential to significantly improve drug design, advance precision medicine, and guide drug safety governance.
项目摘要 我提出了一个精确的药理学和药物警戒研究计划, 通过前瞻性实验室实验进行数据分析,以提高药物的安全性和有效性。我们收集的能力 并存储大量的分子、临床和行为数据, 转变转化医学不难想象一个我们的设备和医生工作的世界 无缝地结合在一起,提供个性化的指导和治疗,以最大限度地提高我们的健康和长寿。 反过来,这些接触产生的数据将由生物医学专家收集、组织和分析, 研究人员发明下一代干预措施。然而,在禁止 朝着这一愿景取得了重大进展。我已经确定了我计划解决的四个问题: (1)许多亚人群,特别是少数民族,缺乏药理学知识 (非白人)、妇女和儿童; (2)观察数据,从设备捕获的数据到医疗记录中收集的数据, 可疑的有效性和价值; (3)对药物反应和药物-药物反应的分子机制的理解有限, 互动; (4)没有明确的方法在保护隐私的同时有意义地共享患者数据。 没有一个单一的解决方案可以解决所有这些挑战。每一个都需要独特的数据组合 科学、信息学和实验。在以前资助的项目中,我们在以下方面取得了重大进展: 药物不良反应和药物相互作用的表征, 药理学途径,以及统计数据挖掘在电子健康记录中的应用。我 通过利用彼此不同的数据源来实现这一点, 在各种条件下重复出现的假设。然后我验证了这些假设 用动物和细胞模型进行实验。挑战2和挑战3是上述挑战的自然延伸。 工作,在那里我将解决如何使用数据的目的以外,它是收集(二次使用) 并开发新的系统模型来解释药物-基因和药物-药物相互作用的生理效应。 挑战1和4代表了新的研究途径,我将在这里解决药理学的挑战。 在不同人群中进行的研究,以及平衡开放性和透明度这一日益重要的问题, 科学与病人隐私权的冲突上述挑战是重大的,而且可能不会是重大的。 在五年内解决。然而,追求这些挑战将产生新的知识, 潜在的显著改善药物设计,推进精准医疗,并指导药物安全治理。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Longitudinal profiling of circulating miRNA during cardiac allograft rejection: a proof-of-concept study.
  • DOI:
    10.1002/ehf2.13238
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Kennel PJ;Yahi A;Naka Y;Mancini DM;Marboe CC;Max K;Akat K;Tuschl T;Vasilescu EM;Zorn E;Tatonetti NP;Schulze PC
  • 通讯作者:
    Schulze PC
Structured deep embedding model to generate composite clinical indices from electronic health records for early detection of pancreatic cancer.
  • DOI:
    10.1016/j.patter.2022.100636
  • 发表时间:
    2023-01-13
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Park, Jiheum;Artin, Michael G.;Lee, Kate E.;May, Benjamin L.;Park, Michael;Hur, Chin;Tatonetti, Nicholas P.
  • 通讯作者:
    Tatonetti, Nicholas P.
Where Have All the Emergencies Gone? The Impact of the COVID-19 Pandemic on Obstetric and Gynecologic Procedures and Consults at a New York City Hospital.
  • DOI:
    10.1016/j.jmig.2020.11.012
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Spurlin EE;Han ES;Silver ER;May BL;Tatonetti NP;Ingram MA;Jin Z;Hur C;Advincula AP;Hur HC
  • 通讯作者:
    Hur HC
No Increased Risk of Colorectal Adenomas in Spouses of Patients with Colorectal Neoplasia.
结直肠肿瘤患者的配偶患结直肠腺瘤的风险不会增加。
Association of Neighborhood Deprivation Index With Success in Cancer Care Crowdfunding.
  • DOI:
    10.1001/jamanetworkopen.2020.26946
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    13.8
  • 作者:
    Silver ER;Truong HQ;Ostvar S;Hur C;Tatonetti NP
  • 通讯作者:
    Tatonetti NP
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas P Tatonetti其他文献

Biomedical text normalization through generative modeling
通过生成式建模进行生物医学文本规范化
  • DOI:
    10.1016/j.jbi.2025.104850
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Jacob S. Berkowitz;Apoorva Srinivasan;Jose Miguel Acitores Cortina;Yasaman Fatapour;Nicholas P Tatonetti
  • 通讯作者:
    Nicholas P Tatonetti

Nicholas P Tatonetti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas P Tatonetti', 18)}}的其他基金

Data-driven drug discovery: investigating the molecular mechanisms of safety and efficacy
数据驱动的药物发现:研究安全性和有效性的分子机制
  • 批准号:
    9920189
  • 财政年份:
    2019
  • 资助金额:
    $ 35.36万
  • 项目类别:
Data-driven drug discovery: investigating the molecular mechanisms of safety and efficacy
数据驱动的药物发现:研究安全性和有效性的分子机制
  • 批准号:
    10833947
  • 财政年份:
    2019
  • 资助金额:
    $ 35.36万
  • 项目类别:
Data-driven drug discovery: investigating the molecular mechanisms of safety and efficacy
数据驱动的药物发现:研究安全性和有效性的分子机制
  • 批准号:
    10433846
  • 财政年份:
    2019
  • 资助金额:
    $ 35.36万
  • 项目类别:
Data-driven drug discovery: investigating the molecular mechanisms of safety and efficacy
数据驱动的药物发现:研究安全性和有效性的分子机制
  • 批准号:
    10393864
  • 财政年份:
    2019
  • 资助金额:
    $ 35.36万
  • 项目类别:
Drug Effect Discovery Through Data Mining and Integrative Chemical Biology
通过数据挖掘和综合化学生物学发现药物作用
  • 批准号:
    8901230
  • 财政年份:
    2014
  • 资助金额:
    $ 35.36万
  • 项目类别:
Drug Effect Discovery Through Data Mining and Integrative Chemical Biology
通过数据挖掘和综合化学生物学发现药物作用
  • 批准号:
    8696226
  • 财政年份:
    2014
  • 资助金额:
    $ 35.36万
  • 项目类别:
Drug Effect Discovery Through Data Mining and Integrative Chemical Biology
通过数据挖掘和综合化学生物学发现药物作用
  • 批准号:
    9282587
  • 财政年份:
    2014
  • 资助金额:
    $ 35.36万
  • 项目类别:

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    $ 35.36万
  • 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
  • 批准号:
    2601817
  • 财政年份:
    2021
  • 资助金额:
    $ 35.36万
  • 项目类别:
    Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
  • 批准号:
    2029039
  • 财政年份:
    2020
  • 资助金额:
    $ 35.36万
  • 项目类别:
    Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
  • 批准号:
    9888417
  • 财政年份:
    2019
  • 资助金额:
    $ 35.36万
  • 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
  • 批准号:
    17K11318
  • 财政年份:
    2017
  • 资助金额:
    $ 35.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    $ 35.36万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    $ 35.36万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    $ 35.36万
  • 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
  • 批准号:
    BB/M50306X/1
  • 财政年份:
    2014
  • 资助金额:
    $ 35.36万
  • 项目类别:
    Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
  • 批准号:
    288272
  • 财政年份:
    2013
  • 资助金额:
    $ 35.36万
  • 项目类别:
    Miscellaneous Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了