Augmenting the On-scene Medic (ATOM): Development of a head-mounted display application to reduce prehospital pediatric medication errors
增强现场医生 (ATOM):开发头戴式显示器应用程序以减少院前儿科用药错误
基本信息
- 批准号:10627347
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Project Summary
The objective of this project is to develop a safe and effective dynamic cognitive aid application for use
through a head-mounted display (HMD), to reduce error rates associated with pediatric medication
administration (PMA) by emergency medical services (EMS). This objective will be achieved by examining
characteristics associated with PMA, using a design thinking process to develop a prototype application,
examining usability of the prototype, and testing the safety and efficacy in a randomized controlled trial.
Errors associated with PMA in EMS are alarmingly high. Numerous studies have shown that there is a 31%
error rate across all drugs administered to children by EMS. Medications such as midazolam and fentanyl have
even higher rates at 61% and 65%, respectfully, with many being 10-fold errors. Sadly, previous strategies
have had little impact on reducing error rates below 31%. System changes have failed due to inconsistencies
in EMS systems, and challenges associated with medication shortages. Previously developed cognitive aids
have fallen short often due to the fact they generally act as simple reference tools and do not address all
causes of error associated with PMA. As a result, we are proposing the most comprehensive design process
ever taken to combat this issue, utilizing advanced technology, to implement a dynamic cognitive aid to help
providers improve dosing accuracy during PMA.
We hypothesize that PMA errors in EMS will be significantly reduced by this application due to the
comprehensive and rigorous design thinking process we will utilize followed by a randomized controlled trial to
test safety and efficacy. Our interdisciplinary team will combine the fields of pediatric emergency medicine,
EMS, engineering, computer science and user interface/user experience to address this issue with the support
and effort of two medical schools in Michigan. In SA1 we will develop a prototype application. This will begin
with identifying user and contextual information associated with PMA, and examine failure modes, root causes,
and a task analysis of the procedure. We will then proceed into a comprehensive design thinking process to
develop the application. During this process we will also create a desktop program that will allow EMS agency
administrators to add new medications to the HMD application. In SA2, we will examine usability of the HMD
application and associated desktop program in a simulation-based environment with a sample of end users,
examining task duration, cognitive load and error rates and make any necessary refinements. In SA3, we will
test the HMD application in a simulation-based randomized controlled trial to examine its safety and efficacy for
use in EMS. This will result in a safe and effective tool to mitigate this alarming issue in the vulnerable EMS
pediatric population.
项目摘要
本项目的目标是开发一个安全有效的动态认知辅助应用程序,
通过头戴式显示器(HMD),以降低与儿科用药相关的错误率
紧急医疗服务(EMS)的PMA管理。为达致这个目标,我们会研究
与PMA相关的特性,使用设计思维过程开发原型应用程序,
检查原型的可用性,并在随机对照试验中测试安全性和有效性。
EMS中与PMA相关的错误高得惊人。许多研究表明,有31%的
EMS给儿童使用的所有药物的错误率。咪达唑仑和芬太尼等药物
甚至更高的比率,分别为61%和65%,其中许多是10倍的错误。可悲的是,以前的策略
对将错误率降低到31%以下几乎没有影响。由于不一致,系统更改失败
在EMS系统中,以及与药物短缺相关的挑战。以前开发的认知辅助工具
由于它们通常作为简单的参考工具,不能解决所有问题,
与PMA相关的错误原因。因此,我们提出了最全面的设计流程,
为了解决这个问题,利用先进的技术,实施动态认知援助,
供应商在PMA期间提高剂量准确性。
我们假设EMS中的PMA错误将通过此应用程序显着减少,
我们将利用全面而严格的设计思维过程,然后进行随机对照试验,
测试安全性和有效性。我们的跨学科团队将联合收割机结合儿科急诊医学领域,
EMS,工程,计算机科学和用户界面/用户体验,以解决这个问题的支持
和密歇根州两所医学院的努力。在SA 1中,我们将开发一个原型应用程序。这将开始
识别与PMA相关的用户和上下文信息,并检查故障模式,根本原因,
以及对该过程的任务分析。然后,我们将进行全面的设计思维过程,
开发应用程序。在此过程中,我们还将创建一个桌面程序,允许EMS代理
管理员将新药物添加到HMD应用程序中。在SA 2中,我们将检查HMD的可用性
应用程序和相关的桌面程序在基于模拟的环境中与最终用户的样本,
检查任务持续时间、认知负荷和错误率,并进行任何必要的改进。在SA 3中,我们将
在基于模拟的随机对照试验中测试HMD的应用,以检查其安全性和有效性,
使用EMS。这将产生一个安全有效的工具,以减轻脆弱的EMS中的这一令人担忧的问题
儿科人群。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John D Hoyle其他文献
John D Hoyle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
- 批准号:
MR/Y033884/1 - 财政年份:2025
- 资助金额:
$ 50万 - 项目类别:
Fellowship
CAREER: Digitize and Simulate the Large Physical World via Knowledge-Grounded Scene Representation
职业:通过基于知识的场景表示对大型物理世界进行数字化和模拟
- 批准号:
2340254 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Towards a Smart Digital Forensic Advisor to Support First Responders with At-Scene Triage of Digital Evidence Across Crime Types
打造智能数字取证顾问,支持急救人员对不同犯罪类型的数字证据进行现场分类
- 批准号:
ES/Y010647/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
MyUnderwaterWorld: Intelligent Underwater Scene Representation
MyUnderwaterWorld:智能水下场景表示
- 批准号:
EP/Y002490/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
CAREER: Efficient coding of visual,structural, and semantic scene information
职业:视觉、结构和语义场景信息的高效编码
- 批准号:
2240815 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Automated semantic scene content extraction for Security, Safety, Construction and Maintenance
用于安保、安全、施工和维护的自动语义场景内容提取
- 批准号:
10063636 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
African SCENe: Sustainable Community Energy Networks
非洲 SCENe:可持续社区能源网络
- 批准号:
10048752 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Feasibility Studies
CAREER: Active Scene Understanding By and For Robot Manipulation
职业:机器人操作的活动场景理解
- 批准号:
2348698 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Functional spatial segregation in auditory scene analysis
听觉场景分析中的功能空间隔离
- 批准号:
10659664 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
CAREER: Sparse Sampling and Reconstruction for Rendering Through Per-Scene Optimization
职业:通过每场景优化进行渲染的稀疏采样和重建
- 批准号:
2238193 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant