3D Cine Magnetic Resonance Fingerprinting for Rapid Phenotyping of Cardiomyopathy
3D 电影磁共振指纹图谱用于心肌病的快速表型分析
基本信息
- 批准号:10626789
- 负责人:
- 金额:$ 66.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAdultAgreementBloodBreathingCardiacCardiomyopathiesCaringCicatrixClinicalCollectionComplexCross-Sectional StudiesDarknessDependenceDetectionDevelopmentDiagnosisDiagnosticDiseaseEFRACEchocardiographyElectrocardiogramEnsureEvaluationEvolutionFibrosisFingerprintFunctional disorderGadoliniumHeartHeart DiseasesHeart failureImageImage EnhancementImaging TechniquesInflammationIschemiaLeftLogistic RegressionsMagnetic ResonanceMagnetic Resonance ImagingManualsMapsMeasurementMeasuresMechanicsMethodsMorphologic artifactsMotionMyocardialMyocardial tissueOutcomePathologyPatient CarePatientsPhasePhenotypePhysicsPropertyProtocols documentationProtonsQuantitative EvaluationsReproducibilityResearchResolutionRunningScanningScientistServicesSignal TransductionStandardizationStructural defectStructureTechniquesTestingTimeTissuesValidationVentricularWorkcardiac magnetic resonance imagingcardiac muscle diseaseclinical imagingcontrast imagingdeep learningdensitydiagnostic accuracyextracellularheart dimension/sizeheart functionimaging modalityimprovedmultidisciplinarymultiparametric imagingnovelprospectivequantitative imagingradiologistreconstructionrecruitrespiratoryrisk stratificationsimulationtool
项目摘要
PROJECT SUMMARY/ABSTRACT
Cardiomyopathy (CM) encompasses a diverse group of diseases of the heart muscle that occur in 1 out of 500
adults and predispose to heart failure. Accurate determination of CM subtype (phenotyping) is essential to inform
downstream tests, risk stratification, and targeted treatments. Cardiac MRI has emerged as the non-invasive
standard for assessment of cardiac structure, function, and tissue properties in patients with suspected CM.
However, cardiac MRI only comprises 1% of all MRI exams in the US, largely due to the need for (1) long and
complex protocols where multiple images are collected with different contrast weightings, (2) unreliable and
uncomfortable strategies to reduce motion, and (3) a lack of reproducibility of certain tissue property
measurements. This multidisciplinary project between MRI scientists and cardiologists will validate 3D cine
Magnetic Resonance Fingerprinting (MRF) as a comprehensive all-in-one imaging technique for CM detection
and phenotyping. A streamlined and paradigm-changing cardiac MRI exam is proposed, consisting of a 5-minute
free-breathing and ungated 3D cine MRF scan that will be collected before and after administration of gadolinium
contrast. This technique will yield quantitative T1, T2, and spin density (M0) maps with 3D isotropic coverage over
the left (LV) and right (RV) ventricles. Additionally, measured tissue properties and MRI simulations will be used
to generate contrast-weighted cine and LGE images in an automated fashion, eliminating the need for multiple
acquisitions and manual scan adjustments. A multicontrast LGE approach is also proposed where bright-blood,
dark-blood, and novel “optimal-contrast” images will be generated to optimally highlight myocardial scar and
fibrosis. The 3D cine MRF exam is expected to have advantages over routine clinical imaging and existing rapid
imaging methods in terms of (1) improved accuracy/reproducibility of quantitative tissue properties, (2) shorter
exam times, (3) reduced operator dependence, and (4) high diagnostic accuracy for specific CM phenotypes.
Technical validation of 3D cine MRF in healthy subjects will be performed in Aim 1, including development of
cardiac/respiratory self-gating methods tailored for MRF and development of a “physics-informed” deep learning
reconstruction for artifact reduction and scan acceleration. Aim 2 will compare image quality and quantitative
measurements from 3D cine MRF to standard MRI methods in patients with established CM. Additionally,
quantitative thresholds for objective detection of specific CM phenotypes will be determined. In Aim 3, tissue
properties and synthetic images derived from 3D cine MRF for will be tested in a prospective cross-sectional
study to evaluate diagnostic accuracy for differentiating (1) ischemic vs nonischemic CM and (2) nonischemic
CM phenotypes, using a standard cardiac MRI protocol as reference. The overall expected outcome of this work
is an ultrafast all-in-one MRI exam for CM detection and phenotyping that will streamline cardiac MRI exams and
assess cardiac structure, function, and tissue properties using reproducible quantitative imaging.
项目总结/摘要
心肌病(CM)包括一组不同的心肌疾病,发生在1/500
成年人和易患心力衰竭。CM亚型(表型)的准确测定对于告知
下游检测、风险分层和靶向治疗。心脏磁共振成像已成为非侵入性的
评估疑似CM患者心脏结构、功能和组织特性的标准。
然而,心脏MRI仅占美国所有MRI检查的1%,这主要是由于(1)需要长时间且
复杂的协议,其中使用不同的对比度权重收集多个图像,(2)不可靠并且
减少运动的不舒适策略,以及(3)缺乏某些组织特性的再现性
测量. MRI科学家和心脏病学家之间的这个多学科项目将验证3D电影
磁共振指纹(MRF)作为一种全面的一体化成像技术,用于CM检测
和表型分析。提出了一种精简和范式改变的心脏MRI检查,包括5分钟的
将在钆给药前后采集的自由呼吸和非门控3D电影MRF扫描
对比度该技术将产生定量的T1、T2和自旋密度(M0)图,具有3D各向同性覆盖,
左心室(LV)和右心室(RV)。此外,将使用测量的组织特性和MRI模拟
以自动方式生成对比加权电影和LGE图像,无需多个
采集和手动扫描调整。还提出了一种多对比度LGE方法,
将生成暗血和新的"最佳对比度"图像,以最佳地突出心肌瘢痕,
纤维化预计3D电影MRF检查优于常规临床成像和现有的快速
在以下方面的成像方法:(1)定量组织性质的提高的准确性/再现性,(2)更短的
检查次数,(3)减少操作者依赖性,和(4)对特定CM表型的高诊断准确性。
将在目标1中对健康受试者进行3D电影MRF的技术确认,包括开发
为MRF量身定制的心脏/呼吸自门控方法和开发"物理信息"深度学习
重建以减少伪影和扫描加速。目标2将比较图像质量和定量
从3D电影MRF到标准MRI方法的测量结果。此外,本发明还
将确定客观检测特定CM表型的定量阈值。在目标3中,组织
将在前瞻性横截面中测试来自3D电影MRF的特性和合成图像
评价区分(1)缺血性与非缺血性CM和(2)非缺血性CM的诊断准确性的研究
CM表型,使用标准心脏MRI方案作为参考。这项工作的总体预期成果
是一种用于CM检测和表型分析的超快一体化MRI检查,将简化心脏MRI检查,
使用可再现的定量成像评估心脏结构、功能和组织特性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JESSE Ian HAMILTON其他文献
JESSE Ian HAMILTON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 66.51万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 66.51万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 66.51万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 66.51万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 66.51万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 66.51万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 66.51万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 66.51万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 66.51万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 66.51万 - 项目类别:
Standard Grant