Synergistic Enhancement of Peripheral Nerve Defect Repair using Peptide Functionalized Aligned Nanofiber Conduits
使用肽功能化对齐纳米纤维导管协同增强周围神经缺损修复
基本信息
- 批准号:10626956
- 负责人:
- 金额:$ 40.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAxonBindingBiocompatible MaterialsCellsClinicClinicalCuesDataDefectDiameterElementsExtracellular MatrixFiberGoalsGrowthGrowth FactorIn VitroInfiltrationInjuryIntegrin BindingKnowledgeLaboratoriesLamininLimb structureMacrophageModelingMolecularMolecular AnalysisMotivationNanofiber ScaffoldNatural regenerationNerve BlockNerve FibersNerve RegenerationNeuritesNeurofibrillary TanglesNeuronsOperative Surgical ProceduresOutcomePathway AnalysisPathway interactionsPeptide FragmentsPeptidesPeripheral NervesPeripheral nerve injuryPlayProcessProtein FragmentProteinsRattusRecoveryRecovery of FunctionRegenerative capacityReportingResearchRoleSchwann CellsSensorySiteSpeedTouch sensationTransforming Growth Factor betaTranslation ProcessTranslationsTraumaUnited StatesWorkaxon regenerationbiodegradable polymercell motilitycell typeexperienceextracellularfabricationhealingimprovedimproved outcomein vivoinjury and repairinnovationinterestlong term recoverymigrationmotor function recoverynanofibernanopolymernerve injurynerve repairnovelpeptidomimeticsperipheral nerve damageperipheral nerve regenerationperipheral nerve repairreconstructionrecruitregenerativerepairedresponsesciatic nervetyrosyl-isoleucyl-glycyl-seryl-arginine
项目摘要
Peripheral nerve regeneration has moved through a variety of stages. Over the past few decades, new details
regarding the process of peripheral nerve regeneration have been elucidated. While the axonal regrowth process
has long been studied, it was noted recently that the regrowth and repair proceeds in tandem with Schwann cell
(SC) infiltration into the injured peripheral nerve defect. SC recruitment and directed migration has been a topic
of interest in our laboratories, with a focus on biased SC migration using topographical and ECM-mimicking
peptides. Our in vitro preliminary data shows a clear induction of directional SC migration using tethered
concentration gradients of both TGF-β peptide and YIGSR-peptide. Our in vivo preliminary data further
demonstrates that synthetic nanofibers support SC infiltration and maturation. Together, these data have
provided us with substantial motivation to further investigate mechanisms that mimic the neuroregenerative
process through the recruitment of SC. To pursue these goals, we have developed functional, degradable
polymers and versatile touch-spinning fabrication strategies to generate spatially-defined, bioactive, aligned
nanofiber conduits and we propose to use this platform to improve the regenerative capacity of injured peripheral
nerves. We believe that cell-free material solutions that enhance the endogenous repair process are
translationally-relevant and will provide the best options for translation of these functional conduits to the clinic
in the near term. We hypothesize that tethered, peptide-based bioactive factors in distinct concentration profiles,
in combination with topographical cues, will increase SC infiltration, and therefore, neuroregeneration, across
critical-sized gaps.
We will pursue this hypothesis with three independent aims. Specific Aim 1: Tethered laminin peptide gradients
to enhance neural cell migration and SC infiltration. We will investigate how concentration gradients of tethered
laminin peptide enhance neurite and SC response, singly and in an explant (multicellular) model. The outcome
of this Aim will yield an optimal nanofiber (diameter, laminin-peptide gradient) to advance to our proposed in vivo
studies in Aim 3. Specific Aim 2: Tethered TGF-β peptide gradients to enhance neural cell migration and SC
infiltration. We will investigate how concentration gradients of tethered TGF-β peptide-based growth factor in
combination with RGD enhance neurite and SC response, singly and in an explant (multicellular) model. The
outcome of this Aim will yield an optimal nanofiber (diameter, TGF-β peptide gradient) to advance to our
proposed in vivo studies in Specific Aim 3. Specific Aim 3: In vivo neural regeneration outcomes improve with
combinations of laminin peptide gradients and TGF-β gradients. We will use the best nanofiber scaffolds
independently identified in Aims 1 and 2 to investigate whether combinations of laminin peptide and TGF-β
peptide concentration gradients will synergistically enhance the initial process of neural regeneration and long-
term functional recovery in vivo in a well-established rat sciatic nerve defect model. With a focus on the early
steps in endogenous repair, along with a long-term recovery metric, this work will provide foundational evidence
in the role that SC play in the nerve regeneration processes. This knowledge will shift our focus in nerve repair
from the axon to cells that are known to support the regeneration process to enhance recovery.
周围神经再生已经经历了不同的阶段。在过去的几十年里,新的细节
关于周围神经再生的过程已经阐明。轴突再生过程
长期以来一直被研究,最近注意到再生和修复与雪旺细胞同步进行,
(SC)浸润到损伤的周围神经缺损中。SC招聘和定向迁移一直是一个话题
感兴趣的在我们的实验室,重点是偏见SC迁移使用地形和ECM模拟
缩氨酸我们的体外初步数据显示,使用栓系的细胞可以明显诱导SC的定向迁移。
TGF-β肽和YIGSR-肽两者的浓度梯度。我们的体内初步数据进一步
表明合成纳米纤维支持SC浸润和成熟。总的来说,这些数据
这为我们进一步研究模拟神经再生的机制提供了巨大的动力。
为了实现这些目标,我们开发了功能性的,可降解的
聚合物和多功能的触摸旋转制造策略,以产生空间限定的,生物活性的,对齐的,
我们建议使用这个平台来提高受损外周血管的再生能力,
神经我们认为,增强内源性修复过程的无细胞材料解决方案是
与临床相关,并将为这些功能性管道的临床应用提供最佳选择
在短期内。我们假设,不同浓度分布的基于肽的生物活性因子,
结合地形学线索,将增加SC浸润,因此,神经再生,
关键的差距。
我们将以三个独立的目标来追求这个假设。具体目标1:束缚层粘连蛋白肽梯度
增强神经细胞迁移和SC浸润。我们将研究浓度梯度如何拴系
层粘连蛋白肽单独和在外植体(多细胞)模型中增强神经突和SC反应。成果
将产生最佳的直径(直径,层粘连蛋白-肽梯度),以推进我们提出的体内
目标3的研究。具体目标2:栓系TGF-β肽梯度增强神经细胞迁移和SC
浸润我们将研究栓系的TGF-β肽基生长因子的浓度梯度如何在细胞中表达。
单独和在外植体(多细胞)模型中,与RGD组合增强神经突和SC反应。的
这一目标的结果将产生一个最佳的直径(直径,TGF-β肽梯度),以推进我们的研究。
具体目标3中提出的体内研究。具体目标3:体内神经再生结果改善,
层粘连蛋白肽梯度和TGF-β梯度的组合。我们会用最好的脚手架
在目的1和2中独立鉴定,以研究层粘连蛋白肽和TGF-β的组合是否
肽浓度梯度将协同增强神经再生的初始过程和长-
在良好建立大鼠坐骨神经缺损模型中的体内长期功能恢复。专注于早期
内源性修复的步骤,沿着长期恢复指标,这项工作将提供基础证据
SC在神经再生过程中的作用。这一知识将转移我们对神经修复的关注
从轴突到已知支持再生过程以增强恢复的细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew L Becker其他文献
Rapid (<3 min) microwave synthesis of block copolymer templated ordered mesoporous metal oxide and carbonate films using nitrate-citric acid systems.
使用硝酸盐-柠檬酸系统快速(<3 分钟)微波合成嵌段共聚物模板有序介孔金属氧化物和碳酸盐膜。
- DOI:
10.1039/c4cc09808k - 发表时间:
2015 - 期刊:
- 影响因子:4.9
- 作者:
Yuanzhong Zhang;Sarang M. Bhaway;Yi Wang;Kevin A. Cavicchi;Matthew L Becker;Bryan D Vogt - 通讯作者:
Bryan D Vogt
Matthew L Becker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew L Becker', 18)}}的其他基金
Synergistic Enhancement of Peripheral Nerve Defect Repair using Peptide Functionalized Aligned Nanofiber Conduits
使用肽功能化对齐纳米纤维导管协同增强周围神经缺损修复
- 批准号:
10786183 - 财政年份:2022
- 资助金额:
$ 40.97万 - 项目类别:
Toward Xeno-free Stem Cell Culture: Nanofiber-directed Differentiation of mESC to Neurons
迈向无异源干细胞培养:纳米纤维定向分化 mESC 至神经元
- 批准号:
8812048 - 财政年份:2015
- 资助金额:
$ 40.97万 - 项目类别:
相似海外基金
An atypical microtubule generation mechanism for neurons drives dendrite and axon development and regeneration
神经元的非典型微管生成机制驱动树突和轴突的发育和再生
- 批准号:
23K21316 - 财政年份:2024
- 资助金额:
$ 40.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 40.97万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 40.97万 - 项目类别:
Does phosphorylation regulation of the axon initial segment cytoskeleton improve behavioral abnormalities in ADHD-like animal models?
轴突起始段细胞骨架的磷酸化调节是否可以改善 ADHD 样动物模型的行为异常?
- 批准号:
23KJ1485 - 财政年份:2023
- 资助金额:
$ 40.97万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Loss-of-function variants of the axon death protein SARM1 and protection from human neurodegenerative disease
轴突死亡蛋白 SARM1 的功能丧失变体和对人类神经退行性疾病的保护
- 批准号:
2891744 - 财政年份:2023
- 资助金额:
$ 40.97万 - 项目类别:
Studentship
Collaborative Research: Evolution of ligand-dependent Robo receptor activation mechanisms for axon guidance
合作研究:用于轴突引导的配体依赖性 Robo 受体激活机制的进化
- 批准号:
2247939 - 财政年份:2023
- 资助金额:
$ 40.97万 - 项目类别:
Standard Grant
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
- 批准号:
10661457 - 财政年份:2023
- 资助金额:
$ 40.97万 - 项目类别:
Unlocking BIN1 function in oligodendrocytes and support of axon integrity
解锁少突胶质细胞中的 BIN1 功能并支持轴突完整性
- 批准号:
10901005 - 财政年份:2023
- 资助金额:
$ 40.97万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 40.97万 - 项目类别:
The role of RNA methylation in cytoskeleton regulation during axon development
RNA甲基化在轴突发育过程中细胞骨架调节中的作用
- 批准号:
22KF0399 - 财政年份:2023
- 资助金额:
$ 40.97万 - 项目类别:
Grant-in-Aid for JSPS Fellows