Synergistic Enhancement of Peripheral Nerve Defect Repair using Peptide Functionalized Aligned Nanofiber Conduits
使用肽功能化对齐纳米纤维导管协同增强周围神经缺损修复
基本信息
- 批准号:10786183
- 负责人:
- 金额:$ 7.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AxonCellsClinicClinicalCuesDataDefectDiameterExtracellular MatrixGoalsGrowthGrowth FactorIn VitroInfiltrationKnowledgeLaboratoriesLamininModelingMolecularMotivationNanofiber ScaffoldNatural regenerationNerve BlockNerve FibersNerve RegenerationNeuritesNeurofibrillary TanglesNeuronsOutcomePeptidesPeripheral NervesPeripheral nerve injuryPlayProcessRattusRecoveryRecovery of FunctionRegenerative capacityRoleSchwann CellsTouch sensationTransforming Growth Factor betaTranslation ProcessTranslationsWorkbiodegradable polymercell motilityfabricationimprovedimproved outcomein vivointerestlong term recoverymigrationnanofibernerve injurynerve repairpeptidomimeticsperipheral nerve damageperipheral nerve regenerationperipheral nerve repairrecruitrepairedresponsesciatic nervetyrosyl-isoleucyl-glycyl-seryl-arginine
项目摘要
Abstract
Peripheral nerve regeneration has moved through a variety of stages. Over the past few decades, new details
regarding the process of peripheral nerve regeneration have been elucidated. While the axonal regrowth
process has long been studied, it was noted recently that the regrowth and repair proceeds in tandem with
Schwann cell (SC) infiltration into the injured peripheral nerve defect. SC recruitment and directed migration
has been a topic of interest in our laboratories, with a focus on biased SC migration using topographical and
ECM-mimicking peptides. Our in vitro preliminary data shows a clear induction of directional SC migration
using tethered concentration gradients of both TGF-β peptide and YIGSR-peptide. Our in vivo preliminary data
further demonstrates that synthetic nanofibers support SC infiltration and maturation. Together, these data
have provided us with substantial motivation to further investigate mechanisms that mimic the
neuroregenerative process through the recruitment of SC. To pursue these goals, we have developed
functional, degradable polymers and versatile touch-spinning fabrication strategies to generate spatially-
defined, bioactive, aligned nanofiber conduits and we propose to use this platform to improve the regenerative
capacity of injured peripheral nerves. We believe that cell-free material solutions that enhance the endogenous
repair process are translationally-relevant and will provide the best options for translation of these functional
conduits to the clinic in the near term. We hypothesize that tethered, peptide-based bioactive factors in distinct
concentration profiles, in combination with topographical cues, will increase SC infiltration, and therefore,
neuroregeneration, across critical-sized gaps. We will pursue this hypothesis with three independent aims.
Specific Aim 1: Tethered laminin peptide gradients to enhance neural cell migration and SC infiltration. We will
investigate how concentration gradients of tethered laminin peptide enhance neurite and SC response, singly
and in an explant (multicellular) model. The outcome of this Aim will yield an optimal nanofiber (diameter,
laminin-peptide gradient) to advance to our proposed in vivo studies in Aim 3. Specific Aim 2: Tethered TGF-β
peptide gradients to enhance neural cell migration and SC infiltration. We will investigate how concentration
gradients of tethered TGF-β peptide-based growth factor in combination with RGD enhance neurite and SC
response, singly and in an explant (multicellular) model. The outcome of this Aim will yield an optimal nanofiber
(diameter, TGF-β peptide gradient) to advance to our proposed in vivo studies in Specific Aim 3. Specific Aim
3: In vivo neural regeneration outcomes improve with combinations of laminin peptide gradients and TGF-β
gradients. We will use the best nanofiber scaffolds independently identified in Aims 1 and 2 to investigate
whether combinations of laminin peptide and TGF-β peptide concentration gradients will synergistically
enhance the initial process of neural regeneration and long- term functional recovery in vivo in a well-
established rat sciatic nerve defect model. With a focus on the early steps in endogenous repair, along with a
long-term recovery metric, this work will provide foundational evidence in the role that SC play in the nerve
regeneration processes. This knowledge will shift our focus in nerve repair from the axon to cells that are
known to support the regeneration process to enhance recovery.
摘要
周围神经再生经历了不同的阶段。在过去的几十年里,新的细节
关于周围神经再生的过程已经阐明。当轴突再生时
过程已经被研究很久了,最近注意到再生和修复是与
雪旺细胞(SC)渗入损伤的周围神经缺损处。SC招聘和定向迁移
一直是我们实验室感兴趣的话题,重点是使用地形和
模拟ECM的多肽。我们的体外初步数据显示明显诱导了SC的定向迁移
使用转化生长因子β多肽和YIGSR多肽的锚定浓度梯度。我们在体内的初步数据
进一步证明合成纳米纤维支持SC的渗透和成熟。总而言之,这些数据
为我们提供了大量的动力来进一步研究模仿
通过招募SC进行神经再生的过程。为了追求这些目标,我们开发了
功能性、可降解聚合物和多功能触摸纺丝制造策略,以产生空间-
定义的,生物活性的,定向的纳米纤维管道,我们建议使用这个平台来改进再生
受损周围神经的能力。我们认为,无细胞材料解决方案可以增强内源性
修复流程与翻译相关,并将为这些功能的翻译提供最佳选择
在短期内为诊所提供管道。我们假设,基于多肽的生物活性因子在不同的
浓度分布与地形线索相结合,将增加Sc的入渗,因此,
神经再生,跨越临界大小的缺口。我们将带着三个独立的目标来追求这一假说。
具体目标1:锚定的层粘连蛋白多肽梯度,以促进神经细胞迁移和SC渗透。我们会
研究浓度梯度的层粘连蛋白多肽如何单独增强轴突和SC的反应
在外植体(多细胞)模型中。该目标的结果将产生最佳的纳米纤维(直径,
层粘连蛋白-多肽梯度),以推进我们在目标3中提议的体内研究。特定目标2:拴系的转化生长因子-β
促进神经细胞迁移和SC渗透的多肽梯度。我们将调查如何集中精力
梯度化转化生长因子-β肽基生长因子联合RGD增强轴突和SC
反应,单个和在外植体(多细胞)模型中。这一目标的结果将产生最佳的纳米纤维
(直径,转化生长因子-β多肽梯度)以推进我们建议的体内特定目标研究3.特定目标
3:结合层粘连蛋白多肽梯度和转化生长因子-β改善体内神经再生结果
渐变。我们将使用目标1和目标2中独立确定的最好的纳米纤维支架来研究
层粘连蛋白多肽和转化生长因子-β多肽浓度梯度联合应用是否具有协同作用
增强体内神经再生的初始过程和长期功能恢复-
建立大鼠坐骨神经损伤模型。重点放在内源性修复的早期步骤,以及
长期恢复指标,这项工作将为SC在神经中所起的作用提供基础证据
再生过程。这一知识将把我们对神经修复的关注从轴突转移到
已知支持再生过程,以促进恢复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew L Becker其他文献
Rapid (<3 min) microwave synthesis of block copolymer templated ordered mesoporous metal oxide and carbonate films using nitrate-citric acid systems.
使用硝酸盐-柠檬酸系统快速(<3 分钟)微波合成嵌段共聚物模板有序介孔金属氧化物和碳酸盐膜。
- DOI:
10.1039/c4cc09808k - 发表时间:
2015 - 期刊:
- 影响因子:4.9
- 作者:
Yuanzhong Zhang;Sarang M. Bhaway;Yi Wang;Kevin A. Cavicchi;Matthew L Becker;Bryan D Vogt - 通讯作者:
Bryan D Vogt
Matthew L Becker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew L Becker', 18)}}的其他基金
Synergistic Enhancement of Peripheral Nerve Defect Repair using Peptide Functionalized Aligned Nanofiber Conduits
使用肽功能化对齐纳米纤维导管协同增强周围神经缺损修复
- 批准号:
10626956 - 财政年份:2022
- 资助金额:
$ 7.78万 - 项目类别:
Toward Xeno-free Stem Cell Culture: Nanofiber-directed Differentiation of mESC to Neurons
迈向无异源干细胞培养:纳米纤维定向分化 mESC 至神经元
- 批准号:
8812048 - 财政年份:2015
- 资助金额:
$ 7.78万 - 项目类别:
相似国自然基金
分化肌细胞脱细胞ECM-cells sheet 3D
支架构建及其促进容积性肌组织缺损再
生修复应用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
CAFs-TAMs-tumor cells调控在HRHPV感染致癌中的作用机制研究及AI可追溯预测模型建立
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
S100A8/A9--Myeloid cells特异性可溶性表氧化物水解酶(sEH)基因敲除改善胰岛素抵抗的新靶点
- 批准号:82070825
- 批准年份:2020
- 资助金额:53 万元
- 项目类别:面上项目
Leader cells通过CCL5调控糖酵解及基质硬度促进结直肠癌集体侵袭的 作用机制
- 批准号:81903002
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
HA/CD44在乳腺癌转移“先导细胞”(leader cells)侵袭中的作用及机制研究
- 批准号:81402419
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
双模式编码的慢病毒载体转染C6 Glioma Cells的影像学研究
- 批准号:81271563
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
树突状细胞(Dendritic cells,DCs)介导的黏膜免疫对猪轮状病毒(PRV)感染的分子作用机制研究
- 批准号:31272541
- 批准年份:2012
- 资助金额:82.0 万元
- 项目类别:面上项目
MTA2在睾丸支持细胞(Sertoli cells)中的功能和机制研究
- 批准号:31271248
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
无外源性基因iPS cells向肠细胞分化及对肠损伤的修复
- 批准号:81160050
- 批准年份:2011
- 资助金额:49.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
- 批准号:
2608627 - 财政年份:2025
- 资助金额:
$ 7.78万 - 项目类别:
Studentship
Next Generation Fluorescent Tools for Measuring Autophagy Dynamics in Cells
用于测量细胞自噬动态的下一代荧光工具
- 批准号:
DP240100465 - 财政年份:2024
- 资助金额:
$ 7.78万 - 项目类别:
Discovery Projects
Dissecting the heterogeniety of human tissue-resident memory T cells
剖析人体组织驻留记忆 T 细胞的异质性
- 批准号:
DE240101101 - 财政年份:2024
- 资助金额:
$ 7.78万 - 项目类别:
Discovery Early Career Researcher Award
Recyclable, smart and highly efficient wire-shaped solar cells waved portable/wearable electronics
可回收、智能、高效的线形太阳能电池挥舞着便携式/可穿戴电子产品
- 批准号:
24K15389 - 财政年份:2024
- 资助金额:
$ 7.78万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interplay of the extracellular matrix and immune cells in lung pathology: key role for chitinase-like proteins
肺病理学中细胞外基质和免疫细胞的相互作用:几丁质酶样蛋白的关键作用
- 批准号:
MR/Y003683/1 - 财政年份:2024
- 资助金额:
$ 7.78万 - 项目类别:
Research Grant
MARVEL-ous Extracellular vesicles carry RXLR effectors into host plant cells
MARVEL-ous 细胞外囊泡携带 RXLR 效应子进入宿主植物细胞
- 批准号:
BB/Y002067/1 - 财政年份:2024
- 资助金额:
$ 7.78万 - 项目类别:
Research Grant
SBIR Phase I: Industrial-Scale Technology for Drug Development in Mature Human Fat Cells
SBIR 第一阶段:成熟人类脂肪细胞药物开发的工业规模技术
- 批准号:
2322443 - 财政年份:2024
- 资助金额:
$ 7.78万 - 项目类别:
Standard Grant
CAREER: Understanding how hierarchical organization of growth plate stem cells controls skeletal growth
职业:了解生长板干细胞的分层组织如何控制骨骼生长
- 批准号:
2339761 - 财政年份:2024
- 资助金额:
$ 7.78万 - 项目类别:
Continuing Grant
根での内外的傷害の初動対処となる新規の傷害防衛戦略"Cellsロック"
“细胞锁”是一种新的损伤防御策略,从根源上对内伤和外伤进行初步反应。
- 批准号:
24KJ2131 - 财政年份:2024
- 资助金额:
$ 7.78万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Roles of immune cells derived from clonal hematopoiesis in B-cell lymphomas
克隆造血来源的免疫细胞在 B 细胞淋巴瘤中的作用
- 批准号:
24K19213 - 财政年份:2024
- 资助金额:
$ 7.78万 - 项目类别:
Grant-in-Aid for Early-Career Scientists