Toward a mechanistic understanding of genetic interactions
对遗传相互作用的机械理解
基本信息
- 批准号:10627988
- 负责人:
- 金额:$ 53.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectCaenorhabditis elegansComplexCopy Number PolymorphismDNADNA Repair GeneDNA biosynthesisDataDiseaseDominant-Negative MutationElementsFertilityGene DeletionGene ExpressionGenesGeneticGenetic EpistasisGenetic VariationGenome StabilityGenomicsGenotypeHumanHuman GeneticsHuman GenomeLongevityMapsMeasurementMitochondriaMolecularMutationPartner in relationshipPathway interactionsPharmaceutical PreparationsPhenotypePopulationProteinsResistanceRibosomal DNARoboticsSaccharomyces cerevisiaeSingle Nucleotide PolymorphismStressSurfaceTechnologyTestingVariantYeastsfitnessgenetic technologygenome-widegenomic locushealthspanhigh throughput analysismodel organismnew technologypolypeptideprotein foldingtooltrait
项目摘要
A key challenge of the post-genomic era is the functional interpretation of the vast numbers of single nucleotide variants
found in human genomes. This challenge is compounded by the fact that these variants contribute to complex traits and
diseases by interacting with one another and with genetic variation in repetitive DNA elements. Assessing the phenotypic
consequences of all genetic interactions amounts to an impossible numbers game. In order to prioritize certain variant
combinations, I will use model organisms with powerful genetics, namely the yeast S. cerevisiae and the worm C.
elegans, to identify and characterize genetic interactions with large impact on complex phenotypes. I propose three
projects that capitalize on our previous studies. These projects are united by their focus on genetic interactions (i.e.
epistasis), albeit they address different types of variant combinations and different mechanisms. The first project focuses
on rDNA, a highly variable repetitive DNA element. Variation in rDNA copy number impacts gene expression,
replication, genome stability, and mitochondrial abundance. Like other repetitive loci, rDNA is predisposed to interact
epistatically with other variants because of its high mutation rate. Using newly developed C. elegans mapping populations
and robotics-enabled phenotyping, our preliminary data show that rDNA copy number variation affects lifespan and
fitness through epistasis. High-throughput analyses of healthspan traits such as stress resistance and fertility are ongoing.
We will pursue fine-mapping of the most significant genomic loci implicated in epistasis with rDNA because their
identity, possibly DNA replication or repair genes, may point to the molecular mechanism by which rDNA variation
affects phenotype. In both yeast and worms, we will use the entire tool box of genetics and genomics to directly
interrogate the pathways by which rDNA copy number variation affects replication, genome stability, and mitochondrial
abundance. To enable accurate high-throughput measurements of rDNA copy number in model organisms and humans,
we will optimize a promising FISH technology. The second project relies on the detailed genotype–phenotype maps we
established for genes in the yeast mating pathway. Selecting single nucleotide variants of small and intermediate effects,
we will combine variants in two genes and test the combinations for mating efficiency while also perturbing strong
genetic modifiers and applying common stresses. To do so, we developed a sequencing strategy that allows us to
simultaneously phenotype tens of thousands of single nucleotide variant combinations between pairs of genes. The third
project will apply a technology of dominant negative polypeptides that we recently developed to identify at genome scale
protein interaction surfaces and their dynamics. In yeast, we will explore to what extent genetic interactions reflect direct
protein interactions. We will ask how easily (or not) protein interaction surfaces are perturbed by mutation, by
evolutionary divergence, or by drugs or stress that perturb protein folding. Together, the results of these three projects will
yield a broad and deep assessment of epistasis, testable hypotheses for human genetics and novel technologies for testing
them.
后基因组时代的一个关键挑战是对大量单核苷酸变异的功能解释
在人类基因组中发现。这些变异导致复杂的性状和特征,这一事实使这一挑战变得更加复杂。
通过相互作用以及重复 DNA 元件的遗传变异来预防疾病。评估表型
所有基因相互作用的后果相当于一场不可能的数字游戏。为了优先考虑某些变体
组合中,我将使用具有强大遗传学的模型生物,即酿酒酵母和蠕虫 C.
线虫,识别和表征对复杂表型有重大影响的遗传相互作用。我建议三个
利用我们之前的研究的项目。这些项目的共同之处在于它们对遗传相互作用的关注(即
上位性),尽管它们涉及不同类型的变体组合和不同的机制。第一个项目重点
rDNA,一种高度可变的重复 DNA 元件。 rDNA 拷贝数的变化影响基因表达,
复制、基因组稳定性和线粒体丰度。与其他重复基因座一样,rDNA 易于相互作用
由于其高突变率,与其他变体具有上位性。使用新开发的秀丽隐杆线虫绘制种群图
和机器人技术支持的表型分析,我们的初步数据表明 rDNA 拷贝数变异影响寿命和
通过上位适应。对抗压性和生育能力等健康寿命特征的高通量分析正在进行中。
我们将追求对与 rDNA 上位性相关的最重要的基因组位点进行精细绘图,因为它们
同一性,可能是 DNA 复制或修复基因,可能指向 rDNA 变异的分子机制
影响表型。在酵母和蠕虫中,我们将使用遗传学和基因组学的整个工具箱来直接
探究 rDNA 拷贝数变异影响复制、基因组稳定性和线粒体的途径
丰富。为了能够对模型生物体和人类中的 rDNA 拷贝数进行准确的高通量测量,
我们将优化一项有前景的 FISH 技术。第二个项目依赖于我们详细的基因型-表型图谱
为酵母交配途径中的基因建立。选择小效应和中等效应的单核苷酸变体,
我们将组合两个基因中的变体并测试组合的交配效率,同时也扰乱强
遗传修饰剂和施加常见压力。为此,我们开发了一种测序策略,使我们能够
同时对基因对之间数以万计的单核苷酸变异组合进行表型分析。第三个
该项目将应用我们最近开发的显性失活多肽技术,以在基因组规模上进行鉴定
蛋白质相互作用表面及其动力学。在酵母中,我们将探索遗传相互作用在多大程度上直接反映
蛋白质相互作用。我们将问蛋白质相互作用表面如何容易(或不易)受到突变的干扰,通过
进化分歧,或扰乱蛋白质折叠的药物或压力。这三个项目的成果共同将
对上位性、人类遗传学的可测试假设和测试新技术进行广泛而深入的评估
他们。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic chromatin accessibility deploys heterotypic cis/trans-acting factors driving stomatal cell-fate commitment.
- DOI:10.1038/s41477-022-01304-w
- 发表时间:2022-12
- 期刊:
- 影响因子:18
- 作者:Kim, Eun-Deok;Dorrity, Michael W.;Fitzgerald, Bridget A.;Seo, Hyemin;Sepuru, Krishna Mohan;Queitsch, Christine;Mitsuda, Nobutaka;Han, Soon-Ki;Torii, Keiko U.
- 通讯作者:Torii, Keiko U.
First discovered, long out of sight, finally visible: ribosomal DNA.
- DOI:10.1016/j.tig.2022.02.005
- 发表时间:2022-06
- 期刊:
- 影响因子:11.4
- 作者:Hall, Ashley N.;Morton, Elizabeth;Queitsch, Christine
- 通讯作者:Queitsch, Christine
Binding and Regulation of Transcription by Yeast Ste12 Variants To Drive Mating and Invasion Phenotypes.
酵母 Ste12 变体转录的结合和调节以驱动交配和入侵表型。
- DOI:10.1534/genetics.119.302929
- 发表时间:2020
- 期刊:
- 影响因子:3.3
- 作者:Zhou,Wei;Dorrity,MichaelW;Bubb,KerryL;Queitsch,Christine;Fields,Stanley
- 通讯作者:Fields,Stanley
LTP2 hypomorphs show genotype-by-environment interaction in early seedling traits in Arabidopsis thaliana.
LTP2 亚型在拟南芥幼苗早期性状中表现出基因型与环境的相互作用。
- DOI:10.1101/2023.05.11.540469
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Alexandre,CristinaM;Bubb,KerryL;Schultz,KarlaM;Lempe,Janne;Cuperus,JoshT;Queitsch,Christine
- 通讯作者:Queitsch,Christine
Impact on splicing in Saccharomyces cerevisiae of random 50-base sequences inserted into an intron.
插入内含子的随机 50 个碱基序列对酿酒酵母剪接的影响。
- DOI:10.1261/rna.079752.123
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Perchlik,Molly;Sasse,Alexander;Mostafavi,Sara;Fields,Stanley;Cuperus,JoshT
- 通讯作者:Cuperus,JoshT
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christine Queitsch其他文献
Christine Queitsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christine Queitsch', 18)}}的其他基金
Toward a mechanistic understanding of genetic interactions
对遗传相互作用的机械理解
- 批准号:
10414870 - 财政年份:2021
- 资助金额:
$ 53.29万 - 项目类别:
Does organismal robustness explain the missing heritability in complex diseases?
机体稳健性能否解释复杂疾病中缺失的遗传性?
- 批准号:
8144732 - 财政年份:2011
- 资助金额:
$ 53.29万 - 项目类别:
TESTING ROBUSTNESS OF EVOLVING YEAST POPULATIONS
测试酵母菌群进化的稳健性
- 批准号:
8171233 - 财政年份:2010
- 资助金额:
$ 53.29万 - 项目类别:
相似国自然基金
犬钩虫中Caenorhabditis elegans daf同源基因的鉴定和功能研究
- 批准号:30972181
- 批准年份:2009
- 资助金额:30.0 万元
- 项目类别:面上项目
利用线虫(Caenorhabditis elegans)模型研究14-3-3蛋白在机体抵御逆境因子胁迫过程中的分子作用机制
- 批准号:30771234
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Genetic Analyses of Dendrite Morphogenesis in Caenorhabditis Elegans
秀丽隐杆线虫树突形态发生的遗传分析
- 批准号:
10736702 - 财政年份:2023
- 资助金额:
$ 53.29万 - 项目类别:
Modeling PIEZO associated diseases in Caenorhabditis elegans: from genetics to mechanism
秀丽隐杆线虫 PIEZO 相关疾病建模:从遗传学到机制
- 批准号:
10866791 - 财政年份:2023
- 资助金额:
$ 53.29万 - 项目类别:
Regulation of synapse development by small GTPase cascades in Caenorhabditis elegans
秀丽隐杆线虫中小 GTP 酶级联对突触发育的调节
- 批准号:
10735077 - 财政年份:2023
- 资助金额:
$ 53.29万 - 项目类别:
Viral vector-mediated gene activation to facilitate large-scale genetic analysis in Caenorhabditis elegans.
病毒载体介导的基因激活,以促进秀丽隐杆线虫的大规模遗传分析。
- 批准号:
10818806 - 财政年份:2023
- 资助金额:
$ 53.29万 - 项目类别:
Perception of Dead Conspecifics modulates neural signaling and lifespan in Caenorhabditis elegans
对死亡同种的感知调节秀丽隐杆线虫的神经信号和寿命
- 批准号:
10828478 - 财政年份:2023
- 资助金额:
$ 53.29万 - 项目类别:
An Automated High-Content Imaging Platform for Caenorhabditis elegans
秀丽隐杆线虫自动化高内涵成像平台
- 批准号:
2327954 - 财政年份:2023
- 资助金额:
$ 53.29万 - 项目类别:
Continuing Grant
Viral vector-mediated gene activation to facilitate large-scale genetic analysis in Caenorhabditis elegans.
病毒载体介导的基因激活,以促进秀丽隐杆线虫的大规模遗传分析。
- 批准号:
10572507 - 财政年份:2023
- 资助金额:
$ 53.29万 - 项目类别:
Decrypting nociceptive signaling pathways in Caenorhabditis elegans using behavioral analysis and mass spectrometry-based proteomics
使用行为分析和基于质谱的蛋白质组学解密秀丽隐杆线虫的伤害性信号通路
- 批准号:
RGPIN-2020-05228 - 财政年份:2022
- 资助金额:
$ 53.29万 - 项目类别:
Discovery Grants Program - Individual
Caenorhabditis Elegans: a Model for Genetic Interaction between the Gut Microbiota and Intestinal Epithelial Cells
秀丽隐杆线虫:肠道微生物群和肠上皮细胞之间遗传相互作用的模型
- 批准号:
10537455 - 财政年份:2022
- 资助金额:
$ 53.29万 - 项目类别:
Caenorhabditis Elegans: a Model for Genetic Interaction between the Gut Microbiota and Intestinal Epithelial Cells
秀丽隐杆线虫:肠道微生物群和肠上皮细胞之间遗传相互作用的模型
- 批准号:
10642737 - 财政年份:2022
- 资助金额:
$ 53.29万 - 项目类别: