Neural Recording and Simulation Tools to Address the Mesoscale Gap

解决中尺度差距的神经记录和模拟工具

基本信息

项目摘要

Abstract We have designed a novel approach to perform multi-scale recordings in the brain across regions and depths. This tool, referred to as DISC for its directional and scalable sensing, is an array of microelectrodes surrounding the lead body and designed to maximize the phenomenon of “substrate shielding”. Electro-quasistatic modeling and in vivo data demonstrate significant improvements over microwires and ring electrodes, including (i) signal amplitude, (ii) signal-to-noise ratio, and (iii) source separation in classification testing. DISC measures local field potentials in stereo and with significant amplification, which is especially powerful in isolating sources at the mesoscale. Several critical challenges for the propagation of this technology are the inherent limitations in photolithographic manufacturing methods, and our continuing inability to relate the local field potential with detailed circuit function. To address these two challenges, we will develop a revolutionary manufacturing method for microelectronics based on aerosol jet printing (Aim 1) and develop a biophysical model that can predict specific voltage outputs (Aim 2). The amplification and directionality of DISC when combined with biophysical forward models will be a unique and power tool to improve the utility of the local field potential. The validation of the hardware and software tools will be performed using chronic rat and macaque auditory experiments. DISC will demonstrate both laminar and network-wide recordings in the auditory core during audio stimulation. We will analyze the ability of DISC recordings to discriminate the best frequency circuits and contrast this with a variety of virtual macroelectrodes, including the ring electrode currently used in sEEG. We believe this multidisciplinary work will culminate in 3 critical tools being made available to the neuroscience and clinical communities: (1) a stereotactically-guided depth array capable of chronic, low-noise wideband recordings that excel at high-resolution mesoscale information; (2) a detailed, multi-scale forward model (NetPyNE/Brainstorm pipeline) that produces simulated voltage readings specific to several device types including DISC; and (3) a high-resolution inverse model, which will extend source localization to mesoscale voltage inputs. The software development will be open-source.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Compton Mosher其他文献

John Compton Mosher的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Compton Mosher', 18)}}的其他基金

Device-Independent Acquisition and Real Time Spatiotemporal Analysis of Clinical Electrophysiology Data
临床电生理学数据的独立于设备的采集和实时时空分析
  • 批准号:
    10225499
  • 财政年份:
    2017
  • 资助金额:
    $ 448.68万
  • 项目类别:
Direct Imaging of Neural Currents using Ultra-Low Field Magnetic Resonance Techni
使用超低场磁共振技术直接成像神经电流
  • 批准号:
    7139534
  • 财政年份:
    2006
  • 资助金额:
    $ 448.68万
  • 项目类别:
Direct Imaging of Neural Currents using Ultra-Low Field Magnetic Resonance Techni
使用超低场磁共振技术直接成像神经电流
  • 批准号:
    7285550
  • 财政年份:
    2006
  • 资助金额:
    $ 448.68万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 448.68万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 448.68万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 448.68万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 448.68万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 448.68万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 448.68万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 448.68万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 448.68万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 448.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 448.68万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了