Exploring brain perivascular fibroblasts in health and cerebral amyloid angiopathy
探索大脑血管周围成纤维细胞在健康和脑淀粉样血管病中的作用
基本信息
- 批准号:10739076
- 负责人:
- 金额:$ 13.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AblationAccelerationAddressAdultAdvisory CommitteesAffectAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAmyloidAmyloid beta-Protein PrecursorArteriesAstrocytesBiologyBlood VesselsBlood flowBrainCalciumCalcium SignalingCellsCerebral Amyloid AngiopathyCerebrovascular systemChildClinicalClinical PathologyCommunicationComplexCoupledDevelopmental BiologyDiameterDiseaseDisease ProgressionEndothelial CellsEnsureEtiologyEventExtracellular Matrix ProteinsFacultyFibroblastsFunctional disorderFutureGene Expression ProfileGenesGenetic TranscriptionGoalsHealthHypercapniaImageImpairmentInvestigationKnowledgeLifeMediatingMentorshipMethodsMicrovascular DysfunctionModelingMusMutationOpticsPathologyPathway interactionsPeptide Initiation FactorsPericytesPhasePhysiologyPopulationRegenerative MedicineReporterReportingResearchResearch InstituteRoleRunningSmooth Muscle MyocytesStructureTechniquesTestingTg2576TherapeuticTissuesTrainingTransgenic OrganismsVascular Diseasesarterioleawakebrain healthcareerconstrictionexperiencegenetic approachimprovedin vivoin vivo imaginginnovationmouse modelneuropathologyneurovascularneurovascular couplingskillstherapy developmenttooltranscriptomicstwo photon microscopyvascular factorvasomotionvenulewasting
项目摘要
PROJECT SUMMARY
Maintaining a stable brain vascular network is crucial for ensuring overall brain health throughout life.
Perivascular cells, like pericytes and smooth muscle cells, are crucial to maintain the integrity of the brain
vasculature. Loss of pericytes and smooth muscle cells are noted in Alzheimer’s Disease (AD) and affects
vascular integrity, ultimately contributing to disease pathology. Perivascular fibroblasts (PVFs) are another cell
population along the brain vasculature, however their role is largely unknown. PVFs express numerous
extracellular matrix proteins that are uniquely found on arterioles and venules but not capillaries. My preliminary
investigations indicate that PVFs maintain vessel structural stability, particularly along arterioles, in the healthy
brain. Further, I find that arterioles are more tortuous in a mouse model of cerebral amyloid angiopathy (CAA),
and this is associated with a significant reduction in PVFs. CAA is a small vessel disease characterized by the
accumulation of amyloid- on vessels commonly observed in AD. Arterioles and their immediate off-shoots are
important major regulators of blood flow into the brain. In doing so, they undergo extensive dilation and
constriction events which is likely supported in part by extracellular matrix proteins expressed by PVFs. The goal
of this proposal is to determine if PVFs regulate arteriole structure and dynamics in the healthy brain.
Further, my goal is to understand if CAA contributes to PVF loss, altering arteriole structure and
dynamics by affecting the expression of extracellular matrix proteins, ultimately exacerbating CAA.
Understanding these important aspects of the brain vasculature could ultimately provide a potential for
developing therapeutics aimed at limiting AD pathology and improve vascular function.
The training I will receive under the guidance of Dr. Andy Shih, who is an expert in in vivo imaging and brain
vascular physiology in health and disease, will enable me to achieve the goals of this proposal. My training is
further supported by my advisory committee, consisting of Drs. Steven Greenberg, Richard Daneman, and
Timothy Cherry who will enhance my training by providing guidance in CAA clinical pathology, PVF pathobiology
and single-cell transcriptomics, respectively. Upon completion of these studies, I will have gained extensive
knowledge of in vivo imaging, complex vascular physiology and single-cell transcriptomic approaches, in addition
to PVF biology in heath and CAA pathology. These foundational studies and techniques are crucial components
of my proposed independent phase described in this application and will propel my future goals of running an
independent research group studying small vessel diseases in the brain. Further, with the support of Dr. Shih,
my advisory committee, and the faculty at Seattle Children’s Research Institute in the Center of Developmental
Biology and Regenerative Medicine, I will have expanded my experience in scientific communication,
grantsmanship, networking, and mentorship. By continuing to strengthen these crucial skills during my training
phase I will be well poised to guide a successful research group of my own.
项目总结
维持稳定的脑血管网络对于确保终生大脑健康至关重要。
血管周围细胞,如周细胞和平滑肌细胞,对维持大脑的完整性至关重要。
脉管系统。周细胞和平滑肌细胞的丢失在阿尔茨海默病(AD)中被注意到,并影响
血管完整性,最终导致疾病病理。血管周围成纤维细胞(PVF)是另一种细胞
然而,它们的作用在很大程度上是未知的。PVF表示了无数
细胞外基质蛋白,仅存在于小动脉和小静脉上,但不存在于毛细血管中。我的初选
研究表明,在健康人中,PVF保持了血管结构的稳定性,特别是沿小动脉
大脑。此外,我发现在脑淀粉样血管病(CAA)的小鼠模型中,小动脉更加曲折,
这与PVF的显著减少有关。CAA是一种小血管疾病,其特征是
淀粉样蛋白-在AD常见的血管上积聚。小动脉和它们的直接分支是
重要的血液流入大脑的主要调节器。在这样做的过程中,它们经历了广泛的扩张和
收缩事件,可能部分由PVF表达的细胞外基质蛋白支持。目标是
这项建议的目的是确定PVF是否调节健康大脑中的小动脉结构和动力学。
此外,我的目标是了解CAA是否导致PVF丢失、改变小动脉结构和
通过影响细胞外基质蛋白的表达来影响动力学,最终加剧CAA。
了解脑血管系统的这些重要方面最终可能为
开发旨在限制AD病理和改善血管功能的治疗方法。
我将在在体成像和大脑方面的专家施安迪博士的指导下接受培训
血管生理学在健康和疾病方面,将使我能够实现这一建议的目标。我的训练是
进一步得到我的顾问委员会的支持,该委员会由Steven Greenberg博士、Richard Daneman博士和
Timothy Cherry将通过提供CAA临床病理学、PVF病理生物学方面的指导来加强我的培训
和单细胞转录组。完成这些研究后,我将获得广泛的收获
了解活体成像、复杂血管生理学和单细胞转录方法
到健康中的PVF生物学和CAA病理学。这些基础研究和技术是至关重要的组成部分
我在此应用程序中描述的提议的独立阶段,并将推动我未来的目标
研究大脑小血管疾病的独立研究小组。此外,在施博士的支持下,
我的顾问委员会和西雅图发展中心儿童研究所的教职员工
生物学和再生医学,我将扩大我在科学交流方面的经验,
资质、人脉和导师。通过在我的培训期间继续加强这些关键技能
第一阶段将很好地指导我自己的一个成功的研究小组。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Bonney其他文献
Stephanie Bonney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Bonney', 18)}}的其他基金
Cellular Behaviors of Perivascular Fibroblasts in Cerebral Ischemia
脑缺血时血管周围成纤维细胞的细胞行为
- 批准号:
10040335 - 财政年份:2020
- 资助金额:
$ 13.17万 - 项目类别:
Cellular Behaviors of Perivascular Fibroblasts in Cerebral Ischemia
脑缺血时血管周围成纤维细胞的细胞行为
- 批准号:
10320730 - 财政年份:2020
- 资助金额:
$ 13.17万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 13.17万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 13.17万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 13.17万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 13.17万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 13.17万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 13.17万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 13.17万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 13.17万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 13.17万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 13.17万 - 项目类别:
Grant-in-Aid for Scientific Research (B)