Investigating the principles of physiological and pathological vascular remodeling via 4D imaging of live mouse skin
通过活体小鼠皮肤 4D 成像研究生理和病理血管重塑的原理
基本信息
- 批准号:10739431
- 负责人:
- 金额:$ 10.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:4D ImagingAblationAddressAdultAgeArchitectureBehaviorBirthBlood VesselsBlood flowCellsCellular MorphologyCharacteristicsCouplingCutaneousDataDevelopmentEndothelial CellsEndotheliumEpidermisGeneticHealthHomeostasisHumanImageImaging TechniquesImaging technologyInjectableInjuryKineticsLasersMaintenanceMediatingMembraneModelingMolecularMonitorMorphologyMusMutant Strains MiceNatural regenerationNeonatalNutrientOrganPathologicPathologyPhysiologicalPlayProcessPropertyRegenerative capacityRegulationReporterResearchResolutionRoleSignal TransductionSkinSkin repairSolidStructureTechniquesTechnologyTemperatureTestingTimeTissuesVEGFA geneVascular PermeabilitiesVascular regenerationVascular remodelingVascularizationVisualizationcell behaviorcell motilitycell typeexperimental studyhemodynamicsimaging approachimprovedin vivoinfancyinjury and repairinnovationintravital imagingmigrationmouse modelmultiphoton microscopymutantneonatenetwork architectureprogramsregenerativerepairedresponsespatiotemporaltime usetissue oxygenationtooltranscriptomicsvascular abnormalityvessel regressionwoundwound healingwound vascularization
项目摘要
PROJECT SUMMARY
The cutaneous vasculature is a crucial yet understudied component of the skin, responsible for essential
functions such as tissue oxygenation, exchange of nutrients and soluble factors, and temperature control.
While we have a significant understanding of vascular abnormalities present in various skin pathologies, we
lack an understanding of both physiological remodeling and homeostatic mechanisms sustaining lifelong
function. Specifically, we lack the resolution of the coordinated cellular behaviors that drive developmental
vascular remodeling, as well as those that underlie vascular regeneration in the face of injury, particularly in the
context of hemodynamic status. I hypothesize that network-wide coordination of EC behaviors in relation
to hemodynamic changes regulates developmental and regenerative remodeling programs of the skin
vasculature. To test this hypothesis, I have established an intravital imaging technique that allows for the
longitudinal tracking and manipulation of the endothelial cells (ECs) that constitute the lining of all blood
vessels in the skin of a live mouse.
In Aim 1, I will investigate the neonatal vessel remodeling program and underlying EC behaviors that
orchestrate the establishment of skin vascular network architecture and blood flow efficiency. Following
establishment of adult vascular homeostasis, I will probe the cellular mechanisms that regulate the
maintenance of adult vessel integrity via a targeted laser ablation approach, modeling the discrete membrane
damage inflicted upon the endothelium due to shear and contractile forces. My preliminary data shows that EC
migration within existing vessel structures is a critical EC behavior that underlies network-wide vessel
regression during neonatal remodeling, as well as the reparative response of adult ECs to local damage. In
Aim 2, I will transition my studies towards the understanding of the skin vasculature in the context of
pathological states. Firstly, I will investigate the wound vascularization mechanisms of neonatal versus adult
skin, and delineate the differential remodeling properties that enable the enhanced wound revascularization in
neonatal skin that we have observed in preliminary experiments. Second, I will determine how coordination of
flow-dependent EC rearrangement impacts the ability of adult wounds to revascularize via a genetic mutant
model that uncouples the ability of ECs to polarize with respect to blood flow direction. To achieve these aims,
I will use an integrated approach of cutting-edge imaging technology, transcriptomics, and genetic mouse
models. This research is significant because we expect to uncover global cellular and molecular mechanisms
that coordinate vascular development, homeostasis, and injury repair. My findings will likely drive innovation in
related fields, given the ubiquity and crucial roles of the vasculature in all organs.
项目摘要
皮肤脉管系统是皮肤的重要但未充分研究的组成部分,负责皮肤的基本功能。
功能如组织氧合、营养物和可溶性因子的交换以及温度控制。
虽然我们对各种皮肤病变中存在的血管异常有了很深的了解,
缺乏对维持终身的生理重塑和自我平衡机制的理解,
功能具体来说,我们缺乏对协调细胞行为的解决方案,这些行为推动了发育
血管重塑,以及那些在面对损伤时血管再生的基础,特别是在
血流动力学状态的背景。我假设,网络范围内的电子商务行为的协调,
调节皮肤的发育和再生重塑程序
脉管系统为了验证这一假设,我建立了一种活体成像技术,
纵向跟踪和操纵构成所有血液衬里的内皮细胞(EC)
活老鼠皮肤上的血管
在目标1中,我将研究新生儿血管重塑计划和潜在的EC行为,
协调皮肤血管网络结构和血流效率的建立。以下
为了建立成人血管内稳态,我将探讨调节血管内稳态的细胞机制。
通过靶向激光消融方法维持成人血管完整性,对离散膜进行建模
由于剪切力和收缩力对内皮造成的损伤。初步数据显示,
在现有血管结构内的迁移是一种关键的EC行为,它是网络范围血管的基础
新生儿重塑过程中的退化,以及成人EC对局部损伤的修复反应。在
目标2,我将把我的研究转向对皮肤血管系统的理解,
病理状态。首先,我将研究新生儿与成人的伤口血管化机制,
皮肤,并描绘差异重塑特性,使增强伤口血运重建,
我们在初步实验中观察到的新生儿皮肤。第二,如何协调
血流依赖性EC重排通过基因突变影响成人伤口再血管化的能力
该模型将EC的能力与血流方向分离。为了实现这些目标,
我将使用尖端成像技术,转录组学和遗传小鼠的综合方法
模型这项研究意义重大,因为我们期望揭示全球细胞和分子机制
协调血管发育、体内平衡和损伤修复。我的发现可能会推动
鉴于脉管系统在所有器官中的普遍性和关键作用,
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen Yuan Kam其他文献
Chen Yuan Kam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
- 批准号:
24K21101 - 财政年份:2024
- 资助金额:
$ 10.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
- 批准号:
24K11201 - 财政年份:2024
- 资助金额:
$ 10.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
- 批准号:
24K11281 - 财政年份:2024
- 资助金额:
$ 10.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
- 批准号:
EP/Z001145/1 - 财政年份:2024
- 资助金额:
$ 10.6万 - 项目类别:
Fellowship
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
- 批准号:
2338890 - 财政年份:2024
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334777 - 财政年份:2024
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334775 - 财政年份:2024
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334776 - 财政年份:2024
- 资助金额:
$ 10.6万 - 项目类别:
Continuing Grant
Cryo laser-ablation system (157+193nm) with 'triple-quad' plasma mass spectrometer, Cryo-LA-ICPMS/MS
带有“三重四极杆”等离子体质谱仪、Cryo-LA-ICPMS/MS 的冷冻激光烧蚀系统 (157 193nm)
- 批准号:
515081333 - 财政年份:2023
- 资助金额:
$ 10.6万 - 项目类别:
Major Research Instrumentation
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
- 批准号:
2320040 - 财政年份:2023
- 资助金额:
$ 10.6万 - 项目类别:
Standard Grant














{{item.name}}会员




