Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
基本信息
- 批准号:10738365
- 负责人:
- 金额:$ 27.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActinsAdultAffectAnimalsBehaviorBiomechanicsBiomedical EngineeringCell ShapeCell-Cell AdhesionCellsChick EmbryoCultured CellsDataDevelopmentDiseaseEmbryoEmbryonic StructuresEmulsionsGelGenerationsGlassImpairmentIn SituLiquid substanceMagnetismMalignant NeoplasmsMapsMeasuresMechanical StressMechanicsMesodermMoldsMolecularMorphogenesisMorphologyMovementMyosin ATPaseMyosin Type IIN-CadherinNatureOilsOrganParaxial MesodermPhysicsProcessPropertyResearchRoleShapesSolidStressStructureSystemTechniquesTestingTissue EngineeringTissuesVariantZebrafishbiomechanical modelcell motilityclaydiagnostic toolembryo tissueepithelial to mesenchymal transitionexperimental studyin vivoinsightmalformationmechanical forcemonolayernon-muscle myosinnovelprenatalregional differenceresponsescoliosissimulationsomitogenesisspatiotemporaltumor progression
项目摘要
PROJECT SUMMARY
Sculpting tissues and organs into their 3D functional morphologies requires a tight spatiotemporal control of
tissue mechanics. While cell-generated mechanical forces power morphogenesis, the resulting tissue flows
that shape embryonic tissues in 3D depend strongly on the local tissue material properties, which govern the
system's response to the internally generated forces. As a consequence, spatiotemporal variations in both
mechanical forces and material properties can, independently or in combination, guide morphogenesis. The
complexity of probing tissue mechanics within developing embryos has so far hindered our ability to dissect
their specific roles and, more generally, to understand the biomechanical mechanisms that govern 3D tissue
and organ morphogenesis.
Using novel microdroplet-based techniques that the PI recently developed to measure both the tissue material
properties and endogenous mechanical stresses within developing embryos, we propose to reveal the
biomechanical mechanisms that underlie the formation of the zebrafish body axis. During posterior body axis
elongation, cells display an anteroposterior gradient in their motility. Our preliminary data suggest that the
anteroposterior variations in cellular movements may be caused by a transition between a fluid-like state of the
tissue at the posterior end to a solid-like state in the presomitic mesoderm. Our hypothesis is that regional
differences in fluid-like and solid-like tissue states control 3D tissue morphogenesis by enabling or restricting
morphogenetic flows. Specifically, we hypothesize that during zebrafish body elongation the paraxial
mesoderm transits from a fluid-like behavior in the tailbud to a solid-like behavior in the presomitic mesoderm,
allowing tissue flows at the elongating body end while providing mechanical integrity to developmentally older
structures, thereby guiding the nearly unidirectional tissue elongation of the body axis. In order to test this
hypothesis, we plan to (1) measure and compare anteroposterior variations in tissue yield stress and
endogenous mechanical stresses to establish the existence of fluid-like or solid-like tissue regions during body
axis elongation, (2) establish how key functional molecules (actin, non-muscle myosin II and N-cadherin)
control gradients in tissue mechanics and solid-like and fluid-like tissue states, and (3) integrate molecular, cell
and tissue mechanics into a multiscale biomechanical model of body elongation.
We believe this research will reveal a novel biomechanical mechanism of 3D tissue and organ morphogenesis,
in which the spatial control of fluid-like and solid-like tissue regions guides the shaping of embryonic tissues.
Moreover, it will dissect the specific roles of mechanical stresses and material properties in 3D tissue
morphogenesis and establish how key functional molecules control tissue mechanics in vivo.
项目总结
将组织和器官塑造成其3D功能形态需要严格的时空控制
组织力学。当细胞产生的机械力为形态发生提供动力时,由此产生的组织流动
在3D中塑造胚胎组织的能力很大程度上依赖于局部组织材料的特性,这些特性控制着
系统对内部产生的力量的反应。因此,两者的时空变化
机械力和材料特性可以独立地或组合地指导形态形成。这个
到目前为止,在发育中的胚胎中探索组织力学的复杂性阻碍了我们解剖
它们的具体作用,更广泛地说,是为了了解支配3D组织的生物力学机制
器官形态发生。
使用PI最近开发的基于微滴的新技术来测量组织材料
特性和发育中胚胎的内源性机械应力,我们建议揭示
斑马鱼体轴形成的生物力学机制。在身体后轴线上
伸长时,细胞的运动性呈现前后梯度。我们的初步数据表明
细胞运动的前后变化可能是由于细胞的流体状态之间的转变引起的
在减数分裂前的中胚层中,后端的组织变为类固体状态。我们的假设是地区性
类流体和类固体组织状态的差异通过启用或限制来控制3D组织形态发生
形态发生流。具体地说,我们假设在斑马鱼身体伸长过程中,
中胚层从尾芽中的类液体行为转变为分裂前中胚层中的类固体行为,
允许组织在细长的身体末端流动,同时为发育中的老年人提供机械完整性
结构,从而引导身体轴的近乎单向的组织伸长。为了测试这一点
假设,我们计划(1)测量和比较组织屈服应力和组织屈服应力的前后变化
内源性机械应力确定体内是否存在类液体或类固体组织区域
轴延长,(2)确定关键功能分子(肌动蛋白、非肌肉肌球蛋白II和N-钙粘蛋白)如何
控制组织力学和类固体和类流体组织状态的梯度,以及(3)将分子、细胞
和组织力学转化为人体伸长的多尺度生物力学模型。
我们相信这项研究将揭示3D组织和器官形态发生的一种新的生物力学机制,
其中,类液体和类固体组织区域的空间控制指导着胚胎组织的形成。
此外,它还将剖析机械应力和材料特性在3D组织中的具体作用
形态发生和建立关键功能分子如何控制体内的组织力学。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Embryonic Tissues as Active Foams.
- DOI:10.1038/s41567-021-01215-1
- 发表时间:2021-07
- 期刊:
- 影响因子:19.6
- 作者:Kim S;Pochitaloff M;Stooke-Vaughan GA;Campàs O
- 通讯作者:Campàs O
Mechanical control of tissue shape and morphogenetic flows during vertebrate body axis elongation.
- DOI:10.1038/s41598-021-87672-3
- 发表时间:2021-04-21
- 期刊:
- 影响因子:4.6
- 作者:Banavar SP;Carn EK;Rowghanian P;Stooke-Vaughan G;Kim S;Campàs O
- 通讯作者:Campàs O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Otger Campas其他文献
Otger Campas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Otger Campas', 18)}}的其他基金
Robust microdroplet-based mechanical probes for wide-ranging mechanobiology applications
坚固的基于微滴的机械探针,适用于广泛的机械生物学应用
- 批准号:
10242779 - 财政年份:2019
- 资助金额:
$ 27.37万 - 项目类别:
Robust microdroplet-based mechanical probes for wide-ranging mechanobiology applications
坚固的基于微滴的机械探针,适用于广泛的机械生物学应用
- 批准号:
10021683 - 财政年份:2019
- 资助金额:
$ 27.37万 - 项目类别:
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
- 批准号:
10152375 - 财政年份:2018
- 资助金额:
$ 27.37万 - 项目类别:
Regulation of organogenesis through regional variations in tissue mechanics
通过组织力学的区域差异调节器官发生
- 批准号:
10330989 - 财政年份:2018
- 资助金额:
$ 27.37万 - 项目类别:
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
- 批准号:
9923046 - 财政年份:2018
- 资助金额:
$ 27.37万 - 项目类别:
Biomechanical mechanisms underlying the formation of the vertebrate body axis
脊椎动物体轴形成的生物力学机制
- 批准号:
9750729 - 财政年份:2018
- 资助金额:
$ 27.37万 - 项目类别:
Bridging the Gap Between Molecular and Mechanical Control of Cell Morphogenesis
弥合细胞形态发生的分子和机械控制之间的差距
- 批准号:
9316651 - 财政年份:2014
- 资助金额:
$ 27.37万 - 项目类别:
Bridging the Gap Between Molecular and Mechanical Control of Cell Morphogenesis
弥合细胞形态发生的分子和机械控制之间的差距
- 批准号:
8825693 - 财政年份:2014
- 资助金额:
$ 27.37万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 27.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 27.37万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 27.37万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 27.37万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 27.37万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 27.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 27.37万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 27.37万 - 项目类别: