Identifying molecular traits associated with extreme human longevity using an AI based integrative approach
使用基于人工智能的综合方法识别与人类极端长寿相关的分子特征
基本信息
- 批准号:10745015
- 负责人:
- 金额:$ 23.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAgingArtificial IntelligenceBiological AssayBiological FactorsBiological MarkersBiological ProcessBiological TestingBiologyBiology of AgingCell Culture TechniquesCentenarianChronicClinicalClinical ResearchCohort StudiesCollectionComplexComputational BiologyDataData SetDevelopmentDiseaseEpidemiologyFamilyFoundationsFramingham Heart StudyFundingGenomicsHumanInterventionInvestmentsKnowledgeLife ExpectancyLongevityMachine LearningMendelian randomizationModelingMolecularMultiomic DataMusNeural Network SimulationOutcomePathway interactionsPerformancePhenotypePhylogenetic AnalysisPhysiologyPredictive FactorProcessPrognostic MarkerProteinsResearchResearch DesignTestingTimeage relatedaging populationartificial intelligence methodbiomarker identificationbiomarker validationcohortdata harmonizationdata integrationdata managementdeep neural networkdesigndrug developmentexperimental studyfollow-upgenetic epidemiologyhealthy aginghigh dimensionalityhuman datamolecular markermultiple omicsneural network architecturenovelnovel markeroutcome predictionpredictive markerrisk mitigationtrait
项目摘要
PROJECT SUMMARY/ABSTRACT
Life expectancy is increasing, and consequently, the burden of chronic age-related disease is also increasing.
Interventions and treatments that target the fundamental biological process of human aging have the potential
to mitigate risk of multiple diseases faced by our aging population. To develop interventions targeting the aging
process, one must identify predictive factors and biomarkers associated with the aging clinical endpoints. By
definition, the development of aging-based conditions and diseases takes time and requires a great deal of
follow-up time. To accelerate research in human aging, biomarkers of human aging and prognostic biomarkers
of healthy human aging are desperately needed. Without reliable biomarkers, early-stage drug development is
severely limited. In this application, we propose a framework to identify biomarkers of healthy human aging
using advanced Artificial Intelligence (AI) methods applied to a wide range of deeply phenotyped studies that
collected data from humans and non-humans. We have assembled a team with deep expertise in clinical
research of aging, genetic epidemiology, biology of aging, and AI. To identify biomarkers of aging through the
integrative analysis of omic data with AI, we propose the following specific aims: Aim 1 (R21, first stage).
Assemble datasets from the Framingham Heart Study (FHS) and the Longevity Consortium (LC) with multiple
omics to test AI methods and to identify biomarkers associated with human aging. Aim 2 (R21, first stage).
Test biologically informed AI Deep Neural Network (DNN) models with FHS and LC data to integrate omic
data, predict outcomes, and identify predictive omic features. Aim 3 (R33, second stage). Apply models from
public data onto exceptional longevity (EL) data. Aim 4 (R33, second stage). Establishing causal relationship
between biomarkers and longevity phenotypes through Mendelian Randomization (MR) analysis and cell
culture experiments.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Spencer Evans其他文献
Daniel Spencer Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Spencer Evans', 18)}}的其他基金
Cross-Species Analysis to Identify Conserve Longevity-Related Pathways and Putative Drug Targets
跨物种分析以确定与长寿相关的途径和假定的药物靶点
- 批准号:
10223817 - 财政年份:2019
- 资助金额:
$ 23.81万 - 项目类别:
相似海外基金
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 23.81万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 23.81万 - 项目类别:
Operating Grants
Penn Artificial Intelligence and Technology Collaboratory for Healthy Aging
宾夕法尼亚大学健康老龄化人工智能与技术合作实验室
- 批准号:
10491759 - 财政年份:2021
- 资助金额:
$ 23.81万 - 项目类别:
AHA Collab: NIA Collaboratories for Artificial Intelligence (AI) and Healthy Aging
AHA 合作:NIA 人工智能 (AI) 和健康老龄化合作实验室
- 批准号:
10272338 - 财政年份:2021
- 资助金额:
$ 23.81万 - 项目类别:
Using Artificial Intelligence to Identify Accelerated Brain Aging in World Trade Center Responders
使用人工智能识别世贸中心急救人员的大脑加速老化情况
- 批准号:
10315319 - 财政年份:2021
- 资助金额:
$ 23.81万 - 项目类别:
Using Artificial Intelligence to Identify Accelerated Brain Aging in World Trade Center Responders
使用人工智能识别世贸中心急救人员的大脑加速老化情况
- 批准号:
10474467 - 财政年份:2021
- 资助金额:
$ 23.81万 - 项目类别:
Penn Artificial Intelligence and Technology Collaboratory for Healthy Aging
宾夕法尼亚大学健康老龄化人工智能与技术合作实验室
- 批准号:
10862939 - 财政年份:2021
- 资助金额:
$ 23.81万 - 项目类别:
Penn Artificial Intelligence and Technology Collaboratory for Healthy Aging
宾夕法尼亚大学健康老龄化人工智能与技术合作实验室
- 批准号:
10624658 - 财政年份:2021
- 资助金额:
$ 23.81万 - 项目类别:
Penn Artificial Intelligence and Technology Collaboratory for Healthy Aging
宾夕法尼亚大学健康老龄化人工智能与技术合作实验室
- 批准号:
10685536 - 财政年份:2021
- 资助金额:
$ 23.81万 - 项目类别:
Penn Artificial Intelligence and Technology Collaboratory for Healthy Aging
宾夕法尼亚大学健康老龄化人工智能与技术合作实验室
- 批准号:
10831192 - 财政年份:2021
- 资助金额:
$ 23.81万 - 项目类别: