Identifying molecular traits associated with extreme human longevity using an AI based integrative approach
使用基于人工智能的综合方法识别与人类极端长寿相关的分子特征
基本信息
- 批准号:10745015
- 负责人:
- 金额:$ 23.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAgingArtificial IntelligenceBiological AssayBiological FactorsBiological MarkersBiological ProcessBiological TestingBiologyBiology of AgingCell Culture TechniquesCentenarianChronicClinicalClinical ResearchCohort StudiesCollectionComplexComputational BiologyDataData SetDevelopmentDiseaseEpidemiologyFamilyFoundationsFramingham Heart StudyFundingGenomicsHumanInterventionInvestmentsKnowledgeLife ExpectancyLongevityMachine LearningMendelian randomizationModelingMolecularMultiomic DataMusNeural Network SimulationOutcomePathway interactionsPerformancePhenotypePhylogenetic AnalysisPhysiologyPredictive FactorProcessPrognostic MarkerProteinsResearchResearch DesignTestingTimeage relatedaging populationartificial intelligence methodbiomarker identificationbiomarker validationcohortdata harmonizationdata integrationdata managementdeep neural networkdesigndrug developmentexperimental studyfollow-upgenetic epidemiologyhealthy aginghigh dimensionalityhuman datamolecular markermultiple omicsneural network architecturenovelnovel markeroutcome predictionpredictive markerrisk mitigationtrait
项目摘要
PROJECT SUMMARY/ABSTRACT
Life expectancy is increasing, and consequently, the burden of chronic age-related disease is also increasing.
Interventions and treatments that target the fundamental biological process of human aging have the potential
to mitigate risk of multiple diseases faced by our aging population. To develop interventions targeting the aging
process, one must identify predictive factors and biomarkers associated with the aging clinical endpoints. By
definition, the development of aging-based conditions and diseases takes time and requires a great deal of
follow-up time. To accelerate research in human aging, biomarkers of human aging and prognostic biomarkers
of healthy human aging are desperately needed. Without reliable biomarkers, early-stage drug development is
severely limited. In this application, we propose a framework to identify biomarkers of healthy human aging
using advanced Artificial Intelligence (AI) methods applied to a wide range of deeply phenotyped studies that
collected data from humans and non-humans. We have assembled a team with deep expertise in clinical
research of aging, genetic epidemiology, biology of aging, and AI. To identify biomarkers of aging through the
integrative analysis of omic data with AI, we propose the following specific aims: Aim 1 (R21, first stage).
Assemble datasets from the Framingham Heart Study (FHS) and the Longevity Consortium (LC) with multiple
omics to test AI methods and to identify biomarkers associated with human aging. Aim 2 (R21, first stage).
Test biologically informed AI Deep Neural Network (DNN) models with FHS and LC data to integrate omic
data, predict outcomes, and identify predictive omic features. Aim 3 (R33, second stage). Apply models from
public data onto exceptional longevity (EL) data. Aim 4 (R33, second stage). Establishing causal relationship
between biomarkers and longevity phenotypes through Mendelian Randomization (MR) analysis and cell
culture experiments.
项目摘要/摘要
预期寿命正在增加,因此,慢性年龄相关疾病的负担也在增加。
针对人类衰老基本生物学过程的干预措施和治疗具有潜力
减轻人口老龄化的多种疾病的风险。制定针对衰老的干预措施
过程,必须识别与衰老临床终点相关的预测因素和生物标志物。经过
定义,基于衰老的疾病和疾病的发展需要时间,需要大量
后续时间。为了加速人类衰老的研究,人类衰老和预后生物标志物的生物标志物
迫切需要健康的人类衰老。没有可靠的生物标志物,早期药物开发是
受到严格限制。在此应用中,我们提出了一个框架来识别健康人类衰老的生物标志物
使用高级人工智能(AI)方法应用于广泛的深层表型研究
收集了人类和非人类的数据。我们已经组建了一个具有深厚专业知识的团队
衰老,遗传流行病学,衰老生物学和AI的研究。通过识别衰老的生物标志物
对OMIC数据的整合分析与AI,我们提出以下特定目的:AIM 1(R21,第一阶段)。
来自Framingham心脏研究(FHS)和寿命联盟(LC)的数据集和多个
OMICS测试AI方法并识别与人衰老相关的生物标志物。目标2(R21,第一阶段)。
测试具有FHS和LC数据的生物学通知的AI深神经网络(DNN)模型以整合OMIC
数据,预测结果并识别预测性的OMIC特征。目标3(R33,第二阶段)。应用模型
公共数据到特殊的寿命(EL)数据。目标4(R33,第二阶段)。建立因果关系
通过孟德尔随机分析(MR)分析和细胞之间的生物标志物与寿命表型之间
培养实验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Spencer Evans其他文献
Daniel Spencer Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Spencer Evans', 18)}}的其他基金
Cross-Species Analysis to Identify Conserve Longevity-Related Pathways and Putative Drug Targets
跨物种分析以确定与长寿相关的途径和假定的药物靶点
- 批准号:
10223817 - 财政年份:2019
- 资助金额:
$ 23.81万 - 项目类别:
相似国自然基金
温度作用下CA砂浆非线性老化蠕变性能的多尺度研究
- 批准号:12302265
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于波动法的叠层橡胶隔震支座老化损伤原位检测及精确评估方法研究
- 批准号:52308322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
东北黑土中农膜源微塑料冻融老化特征及其毒性效应
- 批准号:42377282
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
- 批准号:52376132
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Architectonic analysis of complex cortical circuits in healthy and diseased brain
健康和患病大脑中复杂皮质回路的结构分析
- 批准号:
10749697 - 财政年份:2023
- 资助金额:
$ 23.81万 - 项目类别:
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
- 批准号:
10656644 - 财政年份:2023
- 资助金额:
$ 23.81万 - 项目类别:
Precision Medicine Digital Twins for Alzheimer’s Target and Drug Discovery and Longevity
用于阿尔茨海默氏症靶点和药物发现及长寿的精准医学数字孪生
- 批准号:
10727793 - 财政年份:2023
- 资助金额:
$ 23.81万 - 项目类别:
A population-based study of deep learning derived organ and tissue measures for accelerated aging using repurposed abdominal CT images
使用重新调整用途的腹部 CT 图像对深度学习衍生的器官和组织加速衰老措施进行基于人群的研究
- 批准号:
10795414 - 财政年份:2023
- 资助金额:
$ 23.81万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 23.81万 - 项目类别: