Penn Artificial Intelligence and Technology Collaboratory for Healthy Aging
宾夕法尼亚大学健康老龄化人工智能与技术合作实验室
基本信息
- 批准号:10862939
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-30 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdministrative SupplementAdultAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease caregiverAlzheimer&aposs disease related dementiaAnxietyArtificial IntelligenceBehavior TherapyCaregiversCaringClinicalClinical TrialsComputer softwareDataData SetDatabasesDedicationsDementia caregiversDevelopmentEvaluationFamily CaregiverFutureGenetic TranscriptionGoalsGrantHealthHealthcare SystemsHomeHome environmentHumanIndustryInterventionInterviewLanguageManaged CareMental DepressionModelingMonitorNamesOutcomeParentsPatientsPerformancePilot ProjectsProcessPublic HealthQuality of lifeResearchServicesShapesTechnologyTextTrainingTranscriptU-Series Cooperative AgreementsUnited States National Institutes of HealthWorkaging populationartificial intelligence methodcare systemscollaboratorycommercializationcopingdata repositorydementia carefallshealthy agingimprovedinnovationinnovative technologiesmental statenew technologyopen sourcepublic health relevanceresponsetool
项目摘要
Project Summary (Abstract)
Successful aging in the home can greatly improve quality of life, improve health outcomes, and reduce burden
on the healthcare system. The goal of the Parent P30 is to establish a national collaboratory, named PennAITech,
for the development, evaluation, and implementation of artificial intelligence software and new technologies to
facilitate health aging in the home. Recent advances in AI have led to the development of highly notable Large
Language Models (LLMs) such as OpenAI’s ChatGPT. These models have showcased exceptional abilities in
comprehending and producing text that resembles human language to a remarkable extent, leading to a great
potential to reshape the AI assistance research in caring for aging population. In this supplement, we propose a
pilot project to develop and explore powerful AI assisted tools using LLMs to support caring for the aging
population. We focus our study on family caregivers of patients with Alzheimer’s Disease and Related Dementias
(ADRD) and examine whether LLMs can be developed to answer questions that caregivers have. Since most
LLMs are trained on text data from various domains, their ability for specific domains may not be optimized. Thus,
the overarching goal of this supplement is to collect high-quality data in our domain, and use that to finetune the
LLMs to make them more powerful to answer domain specific questions. Furthermore, this work will highlight
future directions for research of LLM specifically in the context of ADRD care. To achieve this goal, we have two
aims. In Aim 1, we will create a conversational data repository specific to behavior intervention for family
caregivers of persons with dementia to improve their quality of life. We will generate, clean and preprocess the
interview transcripts from behavior intervention sessions for family caregivers of persons with dementia from an
ongoing qualitative data repository, which includes sessions among caregivers and therapists (N= 3,000 as of
6/1/23). In Aim 2, we will build a large language model (LLM) to provide an AI assisted, efficient and scalable
approach in supporting behavior intervention for dementia caregivers. We propose to use the high-quality data
from the conversational database generated in Aim 1 to finetune the existing powerful LLMs, and build an LLM
suitable for answering questions from dementia caregivers to help reduce their anxiety and depression, improve
their mental status and quality of life. The resulting LLM is expected to provide answers that closely align with
those of human experts, offering an AI-assisted, efficient, and scalable approach to behavioral interventions for
family caregivers of dementia patients. Also, this approach can be extended to develop LLMs for other relevant
applications, such as addressing clinical questions related to ADRD. By doing so, this could provide valuable AI-
enabled services to the aging care industry, contributing to the overall improvement of public health.
项目摘要(摘要)
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ethical considerations for researchers developing and testing minimal-risk devices.
- DOI:10.1038/s41467-023-38068-6
- 发表时间:2023-04-22
- 期刊:
- 影响因子:16.6
- 作者:Wexler, Anna;Largent, Emily
- 通讯作者:Largent, Emily
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Demiris其他文献
George Demiris的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Demiris', 18)}}的其他基金
Supporting Family Caregivers of Persons with Dementia
支持痴呆症患者的家庭照顾者
- 批准号:
10550182 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Supporting Family Caregivers of Persons with Dementia
支持痴呆症患者的家庭照顾者
- 批准号:
10364116 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Penn Artificial Intelligence and Technology Collaboratory for Healthy Aging
宾夕法尼亚大学健康老龄化人工智能与技术合作实验室
- 批准号:
10491759 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Penn Artificial Intelligence and Technology Collaboratory for Healthy Aging
宾夕法尼亚大学健康老龄化人工智能与技术合作实验室
- 批准号:
10624658 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Penn Artificial Intelligence and Technology Collaboratory for Healthy Aging
宾夕法尼亚大学健康老龄化人工智能与技术合作实验室
- 批准号:
10685536 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Penn Artificial Intelligence and Technology Collaboratory for Healthy Aging
宾夕法尼亚大学健康老龄化人工智能与技术合作实验室
- 批准号:
10831192 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Penn Artificial Intelligence and Technology Collaboratory for Healthy Aging
宾夕法尼亚大学健康老龄化人工智能与技术合作实验室
- 批准号:
10624657 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
相似海外基金
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
- 批准号:
10850135 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
- 批准号:
10840220 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:
Administrative Supplement: Genome Resources for Model Amphibians
行政补充:模型两栖动物基因组资源
- 批准号:
10806365 - 财政年份:2023
- 资助金额:
$ 32万 - 项目类别:














{{item.name}}会员




