Mechanistically Dissecting Glycolysis Regulation by Lactate and Its Therapeutic Potential in Cancer
机械剖析乳酸的糖酵解调节及其在癌症中的治疗潜力
基本信息
- 批准号:10745359
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:ATP Synthesis PathwayAcuteAntidiabetic DrugsBiochemicalBiochemistryBioenergeticsBiological AssayBiomassCancer cell lineCarbonCell ProliferationCellsChemicalsCitric Acid CycleClinicalComplexConsumptionDataDevelopment PlansDoctor of PhilosophyElectron TransportEnvironmentEnzymesEquilibriumFDA approvedGeneticGlucoseGlycolysisGoalsGrowthImageIn VitroKnock-outKnowledgeLaboratory ResearchMalignant NeoplasmsMass Spectrum AnalysisMediatingMemorial Sloan-Kettering Cancer CenterMentorshipMetabolicMetabolismMethodsMitochondriaNutrientOrganellesOxidative PhosphorylationPermeabilityPhenforminPhosphorylation InhibitionPhysiciansPostdoctoral FellowProductionProliferatingProteinsPyruvateRegulationReporterResearchScientistSerumSourceTherapeuticTrainingUniversitiesWarburg Effectaerobic glycolysiscancer cellcancer therapycareer developmentclinical trainingdesignextracellularimaging modalityin vivoinhibitorinsightliquid chromatography mass spectrometrymedical schoolsmetabolomicsnoveloxidationpatient derived xenograft modelresearch and developmentresponseskillstumortumor metabolismtumor microenvironment
项目摘要
PROJECT SUMMARY/ABSTRACT
Glucose is an essential fuel for cancer cell proliferation in serving both as a substrate for ATP production and
as an irreplaceable carbon source for biomass accumulation. Cancer cells are especially addicted to glucose
but only to secrete the majority as lactate (known as aerobic glycolysis or Warburg effect), thereby creating an
inhospitable glucose-poor and lactate-rich microenvironment that would otherwise be lethal to most cells.
However, cancer cells can efficiently use the limiting glucose and excess lactate for unlimited growth through
unclear mechanisms. My preliminary data revealed that in low glucose conditions, extracellular lactate
enhances cancer cell proliferation. Mechanistically, I found that lactate preferentially enters the mitochondria
TCA cycle over glucose to increase oxidative phosphorylation (OXPHOS) activity, which in turn suppresses
glycolysis to conserve extracellular glucose, suggesting cancer cells rely on lactate-induced OXPHOS for
optimal growth. The proposed studies are aimed at mechanistically dissecting the metabolic interplay between
lactate-mediated mitochondrial OXPHOS and glycolysis (Aim 1 & 3), and assessing therapeutic potential of
targeting lactate oxidation in cancer (Aim 2). The following specific aims are being pursued: Aim 1. Determine
how lactate-mediated increase in OXPHOS suppress glycolysis; Aim 2. Assess the in vivo therapeutic
potential of targeting lactate oxidation using Phenformin; Aim 3. Mechanistically dissect how cells distinguish
and preferentially use extracellular lactate over glucose for entry into TCA cycle. The knowledge and scientific
expertise gained through these studies will facilitate my transition to independence, with my long-term goal to
study and target metabolic vulnerabilities in cancer as a physician scientist.
In addition to the scientific goals, I have also outlined a detailed career development plan in this application to
obtain skills that are necessary for leading an independent research laboratory. The proposed research and
training plan will be conducted under the mentorship of Dr. Craig Thompson. Memorial Sloan-Kettering
Cancer Center, along with the nearby Rockefeller University and Weill Cornell Medical College will provide the
ideal academic environment to achieve these goals for me to transition to independence.
项目总结/摘要
葡萄糖是癌细胞增殖的必需燃料,既作为ATP产生的底物,
作为生物质积累不可替代的碳源。癌细胞对葡萄糖特别上瘾
但只是将大部分以乳酸盐的形式分泌(称为有氧糖酵解或瓦尔堡效应),从而产生
不适宜的葡萄糖贫乏和乳酸盐丰富的微环境,否则对大多数细胞是致命的。
然而,癌细胞可以有效地利用有限的葡萄糖和过量的乳酸盐进行无限生长,
机制不明。我的初步数据显示,在低葡萄糖条件下,细胞外乳酸
增强癌细胞增殖。从机制上讲,我发现乳酸优先进入线粒体
TCA循环超过葡萄糖,以增加氧化磷酸化(OXPHOS)活性,这反过来又抑制
糖酵解以保存细胞外葡萄糖,这表明癌细胞依赖于乳酸盐诱导的OXPHOS
最佳增长。拟议的研究旨在从机制上剖析代谢之间的相互作用,
乳酸盐介导的线粒体OXPHOS和糖酵解(目的1和3),并评估
靶向癌症中的乳酸氧化(Aim 2)。具体目标如下:目标1。确定
乳酸盐介导OXPHOS增加如何抑制糖酵解;目的2.评估体内治疗
潜在的靶向乳酸氧化使用Phenestrin;目的3.机械地剖析细胞如何区分
并优先使用细胞外乳酸而不是葡萄糖进入TCA循环。知识和科学
通过这些学习获得的专业知识将有助于我向独立过渡,我的长期目标是
作为一名医生科学家,研究并瞄准癌症中的代谢弱点。
除了科学的目标,我还在这份申请中概述了详细的职业发展计划,
获得领导独立研究实验室所需的技能。拟议的研究和
培训计划将在克雷格汤普森博士的指导下进行。Memorial Sloan-Kettering
癌症中心,沿着与附近的洛克菲勒大学和威尔康奈尔医学院将提供
理想的学术环境,以实现这些目标为我过渡到独立。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Cai其他文献
Xin Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Cai', 18)}}的其他基金
Mechanistically Dissecting Glycolysis Regulation by Lactate and Its Therapeutic Potential in Cancer
机械剖析乳酸的糖酵解调节及其在癌症中的治疗潜力
- 批准号:
10115324 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Mechanistically Dissecting Glycolysis Regulation by Lactate and Its Therapeutic Potential in Cancer
机械剖析乳酸的糖酵解调节及其在癌症中的治疗潜力
- 批准号:
10352397 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 24.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant