Identifying new drivers of ovarian cancer from the non-coding genome by converging germline risk variants and somatic mutations
通过融合种系风险变异和体细胞突变,从非编码基因组中识别卵巢癌的新驱动因素
基本信息
- 批准号:10746897
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdvisory CommitteesAffectAreaBRCA1 geneBinding SitesBiological AssayBuffersCaliforniaCancer BiologyCell physiologyCessation of lifeChIP-seqChromatinClinicalCodeCollaborationsComplexComputer ModelsComputing MethodologiesDNA SequenceDNA Sequence AlterationDataData ScienceData SetDevelopmentDiseaseElementsEnhancersEnsureEnvironmentEpithelial ovarian cancerEtiologyFacultyFellowshipFosteringFutureGene ExpressionGenesGeneticGenetic RiskGenetic VariationGenomeGenomic SegmentGenotypeGerm-Line MutationGoalsGrantHeritabilityHuman GeneticsInterdisciplinary StudyInterventionKnowledgeKnowledge acquisitionLaboratoriesLearningLos AngelesMachine LearningMalignant NeoplasmsMalignant neoplasm of ovaryMeasurementMedical centerMentorsModelingMolecular ProfilingMutationNatureNoiseNormal tissue morphologyNucleic Acid Regulatory SequencesOvarianPenetrancePhenotypePositioning AttributePostdoctoral FellowPrevention approachProcessProductivityPrognosisProteinsRegulatory ElementResearchResearch PersonnelResearch ProposalsResearch TrainingScienceSeriesSomatic MutationSusceptibility GeneTP53 geneTechniquesTechnologyTrainingTraining ProgramsTranscriptional RegulationTumor TissueUniversitiesUntranslated RNAVariantcancer geneticscancer genomicscancer initiationcancer predispositioncancer typecareer developmentcell typeclinical translationcohortcomplex biological systemsepigenetic regulationepigenomicsexperiencegenetic informationgenetic variantgenome sequencinggenome wide association studygenome-widegenome-wide analysisgenomic datahistone modificationimprovedinsightmachine learning modelmortalitymultiple omicsnext generation sequencingnovelovarian neoplasmpopulation basedprecursor cellprofessorpromoterrisk variantsuccesstenure tracktranscription factortumortumor progressiontumorigenesiswhole genome
项目摘要
PROJECT SUMMARY/ABSTRACT
The goal of the proposed research training program is to provide tailored additional training to facilitate successful
career development throughout the completion of postdoctoral fellowship and the transition to independent
tenure track professor. The key elements of this plan are:
Candidate: I have considerable research experience in developing and applying computational models to
understand complex biological systems. The training component of this proposal will focus on acquisition of
knowledge in cancer genetics and genomics, integrative computational methodologies, and next-generation
sequencing technologies. Additionally, I will receive training in laboratory management, networking and
collaborations, and grant submissions. This well-rounded training plan will accelerate my goals of being an
independent researcher and developing computational models to better understand cancer biology.
Environment: The training environment at Cedars-Sinai Medical Center fosters productivity and collaboration
with world class researchers in clinical and basic biomedical science. I have assembled an advisory committee
with esteemed experts in the areas of epigenomics, genetics, data science and cancer biology to ensure my
success in this training program and to guide me through the successful acquisition of a tenure track faculty
position. These include my mentor Dr. Simon Gayther and four advisors, Dr. Benjamin Berman and Dr. Shelly
Lu from Cedars-Sinai, and Dr. Bogdan Pasaniuc, and Dr. Paul Boutros from University of California, Los Angeles.
Research: A fundamental goal of human genetics is to decipher the relationship between genotype and
phenotype. Cancer is a disease comprising a heritable component that confers cancer predisposition and an
acquired (somatic) component where accumulation of genetic alterations occurs during disease development.
Population based genome-wide association studies (GWAS) and whole genome sequencing (WGS) analyses
have identified thousands of germline risk variants and somatic non-coding mutations involved in ovarian cancer
development. Often, protein-coding cancer driver genes harbor both deleterious germline risk variants and
somatic mutations. This proposal hypothesizes that the same is true for non-coding cancer drivers. With the
wealth of epigenomics and regulatory datasets, the goal is to identify genomic regions where there are
interactions between germline and somatic variants. The specific aims are: (1) identify functional regulatory
elements where non-coding germline and somatic ovarian cancer variants co-localize; (2) identify non-coding
ovarian cancer drivers through multi-omics regulatory evidence by machine learning models. The proposed
studies will establish systematic and quantitative models to identify ovarian cancer non-coding drivers and
improve our understanding of disease etiology.
项目总结/摘要
拟议的研究培训计划的目标是提供量身定制的额外培训,以促进成功的
整个职业发展博士后奖学金的完成和过渡到独立
终身教授该计划的主要内容是:
候选人:我在开发和应用计算模型方面有相当丰富的研究经验,
了解复杂的生物系统。本提议的培训部分将侧重于购置
癌症遗传学和基因组学知识,综合计算方法学和下一代
测序技术。此外,我将接受实验室管理,网络和
合作和赠款提交。这个全面的培训计划将加速我成为一名
独立研究人员和开发计算模型,以更好地了解癌症生物学。
环境:Cedars-Sinai医疗中心的培训环境促进了生产力和协作
在临床和基础生物医学科学领域拥有世界一流的研究人员。我召集了一个顾问委员会
与表观基因组学、遗传学、数据科学和癌症生物学领域的知名专家合作,
成功地在这个培训计划,并指导我通过一个终身教职员工的成功收购
位置其中包括我的导师西蒙·盖瑟博士和四位顾问本杰明·伯曼博士和雪莉博士
来自西达斯-西奈的卢博士,来自洛杉矶的加州大学的波格丹·帕萨纽克博士和保罗·布特罗斯博士。
研究:人类遗传学的一个基本目标是破译基因型与基因型之间的关系。
表型癌症是一种疾病,其包含赋予癌症易感性的可遗传组分和
获得性(体细胞)成分,其中在疾病发展期间发生遗传改变的积累。
基于人群的全基因组关联研究(GWAS)和全基因组测序(WGS)分析
已经确定了数千种与卵巢癌有关的生殖系风险变异和体细胞非编码突变
发展通常,编码蛋白质的癌症驱动基因含有有害的生殖系风险变体和
体细胞突变该提案假设非编码癌症驱动程序也是如此。与
丰富的表观基因组学和监管数据集,目标是确定基因组区域,
生殖系和体细胞变异之间的相互作用。具体目标是:(1)识别功能性监管
其中非编码生殖系和体细胞卵巢癌变体共定位的元件;(2)鉴定非编码
通过机器学习模型的多组学监管证据来驱动卵巢癌。拟议
研究将建立系统和定量模型,以确定卵巢癌非编码驱动因素,
提高我们对疾病病因的认识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pei-Chen Peng其他文献
Pei-Chen Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pei-Chen Peng', 18)}}的其他基金
Identifying new drivers of ovarian cancer from the non-coding genome by converging germline risk variants and somatic mutations
通过融合种系风险变异和体细胞突变,从非编码基因组中识别卵巢癌的新驱动因素
- 批准号:
10115485 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Identifying new drivers of ovarian cancer from the non-coding genome by converging germline risk variants and somatic mutations
通过融合种系风险变异和体细胞突变,从非编码基因组中识别卵巢癌的新驱动因素
- 批准号:
10322728 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Toward a Political Theory of Bioethics: Participation, Representation, and Deliberation on Federal Bioethics Advisory Committees
迈向生命伦理学的政治理论:联邦生命伦理学咨询委员会的参与、代表和审议
- 批准号:
0451289 - 财政年份:2005
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant