Shear stress-activated synthetic cells for targeted drug release in stenotic blood vessels

剪切应力激活合成细胞用于狭窄血管中的靶向药物释放

基本信息

  • 批准号:
    10749217
  • 负责人:
  • 金额:
    $ 4.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Narrowing of critical blood vessels due to thrombosis or embolism is one of the most prevalent heart valve diseases and the leading cause of death with aging. Their hemodynamic environment significantly changes as a result, with an increase in shear stress up to >1000 dyne/cm2 in highly constricted vessels compared to 1–70 dyne/cm2 in normal vessels. Since the increased shear stress activates platelets, the vessels become even more narrow at the stenotic site from the platelet aggregation, leading to a life-threatening stroke or long-term disability. The current treatment for obstructed vessels is to administer thrombolytic or anticoagulant drugs, but it entails high bleeding risk as active drugs are distributed throughout the body. Thus, to overcome current limitations, the goal of this proposal is to develop a synthetic cell system that only releases drugs in constricted vessels where it exhibits abnormally high shear stress. A synthetic cell is a bilayer membrane structure (e.g., vesicle) that includes various biomolecules to carry out cell-like behaviors. They are gaining attention in the drug delivery field as they can present sense-responsive behavior towards the surrounding environment when engineered with membrane proteins. To develop a shear stress-responsive synthetic cell that can be used for targeted drug delivery in stenotic blood vessels, we will use the most well-studied bacterial mechanosensitive channels, the mechanosensitive channel of large conductance (MscL). MscL is a non-selective channel that opens upon an increase in membrane tension. Our lab is the first group, to our knowledge, to develop synthetic cells using MscL and successfully demonstrate their function under hypo-osmotic condition. Recent theoretical studies have shown that the MscL reconstituted in vesicles can also be activated by shear stress when flowing through a narrowing constriction channel. Our hypothesis is that MscL incorporated in vesicles will be opened under shear stress by vesicle-shape deformation-driven membrane stretch and release the loaded drugs. We will investigate MscL activity under shear stress using constricted microfluidic channels in Aim 1. Contributing factors, such as vesicle size and lipid compositions, will be tuned to understand their effects on MscL response. In Aim 2, we will examine the potential value of the system in vitro. We will introduce thrombolytic drug-loaded synthetic cells into microfluidic channels that are constricted with experimentally induced fibrin emboli and monitor the dissolution of the clots. Successful completion of this work will result in the development of shear stress-responsive synthetic cells that can locally release thrombolytic or anticoagulant drugs in constricted or stenotic vessels. This work will further expand the application boundary of the synthetic cell field by utilizing mechanical stimulus-responsive synthetic cells as drug carriers. Additionally, successful activation of MscL under shear stress will provide a deeper understanding of MscL and demonstrates this channel's effectiveness in the drug delivery field as a drug- releasing valve in more diverse contexts.
项目摘要 由于血栓或栓塞导致的关键血管狭窄是最常见的心脏瓣膜病之一 疾病和死亡的主要原因与老化。他们的血流动力学环境显著改变, 结果,与1-70达因/cm 2相比,在高度收缩的血管中剪切应力增加高达>1000达因/cm 2, dyne/cm 2。由于增加的剪切应力激活血小板,血管变得更加 狭窄部位的血小板聚集,导致危及生命的中风或长期残疾。 目前对阻塞血管的治疗是给予溶栓或抗凝药物,但这需要 高出血风险,因为活性药物分布在全身。因此,为了克服当前的限制, 这项提议的目标是开发一种合成细胞系统,该系统只在狭窄的血管中释放药物, 它表现出异常高的剪切应力。合成细胞是双层膜结构(例如,囊泡), 包括各种生物分子以执行细胞样行为。它们在药物输送领域正受到关注 因为它们可以对周围环境呈现感官反应行为, 膜蛋白开发剪切应力响应性合成细胞,用于靶向药物治疗 在狭窄的血管中输送,我们将使用研究最充分的细菌机械敏感通道, 大电导机械敏感通道(MscL)。MSCL是一个非选择性通道, 膜张力增加。据我们所知,我们的实验室是第一个使用MscL开发合成细胞的小组 并成功地证明了它们在低渗条件下的功能。最近的理论研究 表明在囊泡中重组的MscL也可以在流过微囊时被剪切应力激活。 缩窄通道。我们的假设是,MscL纳入囊泡将打开剪切下 通过囊泡形状的变形驱动膜的应力拉伸和释放负载的药物。我们将调查 目的1中使用收缩的微流体通道在剪切应力下的MscL活性。促成因素,例如 囊泡大小和脂质成分,将被调整,以了解它们对MscL反应的影响。在目标2中,我们将 检验该系统在体外的潜在价值。我们将把装载溶栓药物的合成细胞引入 微流体通道被实验诱导的纤维蛋白栓塞收缩并监测溶解 血块的位置这项工作的成功完成将导致发展的剪切应力响应合成 在收缩或狭窄的血管中局部释放血栓溶解或抗凝药物的细胞。这项工作将 利用机械刺激响应, 合成细胞作为药物载体。此外,在剪切应力下成功激活MscL将提供 更深入地了解MscL,并展示了该通道在药物递送领域作为药物的有效性- 在更多样化的环境中释放阀门。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sung-Won Hwang其他文献

Sung-Won Hwang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
  • 批准号:
    24K18114
  • 财政年份:
    2024
  • 资助金额:
    $ 4.13万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    $ 4.13万
  • 项目类别:
    Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    $ 4.13万
  • 项目类别:
    Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 4.13万
  • 项目类别:
    Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
  • 批准号:
    23K20339
  • 财政年份:
    2024
  • 资助金额:
    $ 4.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
  • 批准号:
    2740736
  • 财政年份:
    2024
  • 资助金额:
    $ 4.13万
  • 项目类别:
    Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 4.13万
  • 项目类别:
    Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 4.13万
  • 项目类别:
    Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
  • 批准号:
    498278
  • 财政年份:
    2024
  • 资助金额:
    $ 4.13万
  • 项目类别:
    Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
  • 批准号:
    24K04938
  • 财政年份:
    2024
  • 资助金额:
    $ 4.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了