Mechanisms of Cell-Free Hemoglobin-Mediated Injury to the Pulmonary Endothelial Glycocalyx in Sepsis
脓毒症中无细胞血红蛋白介导的肺内皮糖萼损伤机制
基本信息
- 批准号:10748825
- 负责人:
- 金额:$ 3.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:Acute Respiratory Distress SyndromeAffectAutomobile DrivingBiologicalBlood VesselsCause of DeathCellsCessation of lifeCirculationClinicalCommunicationComplexCritical IllnessCritical ThinkingDevelopmentEndotheliumEnzymesErythrocytesExperimental DesignsFunctional disorderFutureGenetic TranscriptionGlycocalyxGlycoproteinsHemoglobinHumanImmune responseImpairmentInfectionInjuryInvestigationLifeLinkLungMaintenanceMediatingMediatorMessenger RNAMethodsMicrovascular PermeabilityModelingMolecularMolecular TargetMorbidity - disease rateMusOrganOutcomeOxidantsOxidation-ReductionPathogenesisPathway interactionsPatientsPermeabilityPersonsPhysiciansPlasma CellsProblem SolvingProcessProductionProteoglycanPublic HealthReactive Oxygen SpeciesResearch PersonnelRoleScientistSepsisSeveritiesSuperoxide DismutaseSuperoxidesTestingTissuesTrainingUp-RegulationVascular Permeabilitiescareercostendothelial dysfunctionexperimental studyextracellularheparanaseimprovedinflammatory milieuinsightknockout animallung injurylung microvascular endothelial cellsmortalitymouse modelnovel strategiesorgan injuryoverexpressionoxidationpolymicrobial sepsissepticseptic patientsskillssuccesssyndecantherapeutic developmenttranscription factor
项目摘要
PROJECT SUMMARY
Sepsis, or life-threatening organ dysfunction due to a dysregulated host response to infection, is a critical
public health issue. Affecting nearly 50 million people annually, sepsis is a leading cause of death worldwide,
and significantly impacts the global economy. A major reason for the substantial burden of sepsis is an
insufficient understanding of the biologic mechanisms that potentiate its pathogenesis. One of the hallmarks of
sepsis is endothelial injury, which manifests as endothelial barrier hyperpermeability and results in organ
dysfunction including acute respiratory distress syndrome (ARDS). A known contributor to the disruption of
endothelial barrier integrity in sepsis is cell-free hemoglobin (CFH), hemoglobin released into the circulation
from lysed red blood cells. CFH is elevated in the majority of patients with sepsis and is associated with higher
rates of organ dysfunction, such as ARDS, and death. This proposal seeks to define the pathophysiologic role
of CFH in endothelial hyperpermeability in sepsis. A primary regulator of endothelial permeability is the
endothelial glycocalyx, a matrix of glycoproteins and proteoglycans that lines the vascular lumen. In sepsis,
this function is impaired due to increased activity of heparanase, an enzyme that degrades the endothelial
glycocalyx. Importantly, greater glycocalyx breakdown correlates with worse sepsis outcomes. Given that
heparanase expression is, in part, modulated by transcription factors that are stimulated by reactive oxygen
species (ROS), and that CFH undergoes oxidation in the inflammatory environment of sepsis, producing ROS
including superoxide in the process, I hypothesize that CFH-generated superoxide triggers glycocalyx
cleavage via induction of heparanase expression, thereby serving as a critical mediator of endothelial
hyperpermeability and consequent organ injury in sepsis. I will test the effect of CFH on the pulmonary
endothelial glycocalyx using mechanistic approaches in both cultured primary human lung microvascular
endothelial cells and murine polymicrobial sepsis. Both models will be used to accomplish each Aim. In Aim 1,
I will determine the impact of superoxide and CFH on glycocalyx degradation, endothelial barrier function, and
sepsis-associated lung injury, severity, and mortality. Aim 2 will define the role of CFH in the modulation of
heparanase expression and activity. I will also interrogate whether alterations in heparanase expression and
activity affect endothelial barrier permeability and sepsis outcomes. Finally, I will delineate the impact of CFH-
generated superoxide on heparanase expression and activity to complete my investigation of this proposed
pathway. In resolving the role of CFH in glycocalyx degradation and endothelial dysfunction, I will deliver
unprecedented insights into the consequences of elevated circulating CFH during sepsis, with potential to
unveil new approaches to the development of therapeutics for the treatment of sepsis-associated lung injury.
Furthermore, the completion of this project will facilitate the development of my technical, critical thinking, and
communication skills that will be crucial to my success as an independent physician-scientist.
项目摘要
败血症或由于宿主对感染的失调反应而导致的器官功能障碍是关键
公共卫生问题。每年影响近5000万人,败血症是全球死亡的主要原因,
并显着影响全球经济。重大败血症负担的主要原因是
对增强其发病机理的生物学机制的了解不足。的标志之一
败血症是内皮损伤,表现为内皮屏障超透明度,并导致器官
功能障碍,包括急性呼吸窘迫综合征(ARDS)。造成破坏的已知贡献者
败血症中的内皮屏障完整性是无细胞的血红蛋白(CFH),血红蛋白释放到循环中
来自裂解的红细胞。大多数败血症患者的CFH升高,与较高
器官功能障碍(例如ARDS和死亡)的发生率。该建议旨在定义病理生理角色
败血症内皮过度过敏性的CFH的CFH。内皮通透性的主要调节剂是
内皮糖脂,是糖蛋白和蛋白聚糖的基质,该基质在血管腔中排成。在败血症中
该功能由于肝素酶的活性增加而受到损害,乙酰肝素的活性是一种降解内皮的酶
糖脂。重要的是,较大的糖脂分解与败血症结果较差有关。鉴于
肝素酶表达部分由被活性氧刺激的转录因子调节
物种(ROS),CFH在败血症的炎症环境中经历氧化,产生ROS
在此过程中包括超氧化物,我假设CFH生成的超氧化物触发糖蛋白
通过诱导肝素酶表达裂解,从而充当内皮的关键介体
败血症中的过敏性和随之而来的器官损伤。我将测试CFH对肺部的影响
两种培养的原发性人肺微血管中使用机械方法的内皮糖蛋白
内皮细胞和鼠多菌血性败血症。两种模型都将用于实现每个目标。在AIM 1中,
我将确定超氧化物和CFH对糖脂降解,内皮屏障功能和
败血症相关的肺损伤,严重程度和死亡率。 AIM 2将定义CFH在调制中的作用
肝素酶的表达和活性。我还将询问肝素酶表达的改变和
活动会影响内皮屏障的渗透性和败血症。最后,我将描述CFH-的影响
在肝素酶表达和活性上产生超氧化物,以完成我对此提出的研究
路径。在解决CFH在糖脂降解和内皮功能障碍中的作用时,我将交付
对败血症期间循环CFH升高的后果的前所未有的见解,有可能
揭示了针对治疗败血症相关肺损伤的治疗疗法的新方法。
此外,该项目的完成将有助于发展我的技术,批判性思维和
对于我作为独立医师科学家的成功至关重要的沟通技巧。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Avery May Bogart其他文献
Avery May Bogart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
MLL1 drives collaborative leukocyte-endothelial cell signaling and thrombosis after coronavirus infection
MLL1在冠状病毒感染后驱动白细胞-内皮细胞信号传导和血栓形成
- 批准号:
10748433 - 财政年份:2023
- 资助金额:
$ 3.29万 - 项目类别:
Bispecific immunotherapeutic delivery system for lung diseases
用于肺部疾病的双特异性免疫治疗递送系统
- 批准号:
10720773 - 财政年份:2023
- 资助金额:
$ 3.29万 - 项目类别:
Investigating Recruited Lung Macrophage Programming and Turnover in Self-Limited Versus Prolonged Lung Inflammation
研究自限性与长期肺部炎症中招募的肺巨噬细胞编程和周转
- 批准号:
10749322 - 财政年份:2023
- 资助金额:
$ 3.29万 - 项目类别:
Loss of Endothelial S1PR1 Drives Post-Influenza Pulmonary Fibrosis
内皮 S1PR1 的缺失导致流感后肺纤维化
- 批准号:
10634045 - 财政年份:2023
- 资助金额:
$ 3.29万 - 项目类别: