A multi-modal approach for efficient, point-of-care screening of hypertrophic cardiomyopathy
一种高效、即时筛查肥厚型心肌病的多模式方法
基本信息
- 批准号:10749588
- 负责人:
- 金额:$ 7.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAlgorithmsAmyloidAnatomyArtificial IntelligenceAwarenessBoard CertificationCardiacCardiovascular systemCase/Control StudiesClinicalClinical InformaticsCommunitiesComputer ModelsComputer Vision SystemsComputing MethodologiesConsumptionDataData SetDetectionDevelopmentDevicesDiagnosisDiagnostic testsDiseaseEarly DiagnosisEchocardiographyElectrocardiogramElectronic Health RecordEligibility DeterminationEmergency department visitEnsureEventFellowshipGeneral PopulationGenerationsGoalsHealthHealth systemHypertrophic CardiomyopathyImageIndividualLabelLeadLearningLeft Ventricular HypertrophyLibrariesMachine LearningMagnetic ResonanceMagnetic Resonance ImagingMapsMedical InformaticsMentorsMentorshipMethodsModalityModelingMorbidity - disease rateMorphologic artifactsNoiseOutcomePathway interactionsPatientsPerformancePhenotypePopulationPopulation HeterogeneityPostdoctoral FellowPrevalenceProcessProviderRandomized, Controlled TrialsResearchResource-limited settingRetrospective cohortRiskScreening procedureSignal TransductionSpecialized CenterStructureTechnologyTestingTimeTrainingTwo-Dimensional EchocardiographyUltrasonographyadvanced analyticsautoencoderbiobankcardiac magnetic resonance imagingcareerclinical heterogeneitycomputer sciencecomputing resourcescostdeep learning modeldenoisingdesigndiagnostic algorithmempowermentexperiencefeasibility testinggenetic testingheart dimension/sizehypertensive heart diseaseimplementation scienceimprovedimproved outcomeinherited cardiomyopathymachine learning algorithmmedical schoolsmortalitymultimodalitynovelnovel therapeuticspoint of careportabilitypreventprimary care clinicprospectiverecruitscreeningscreening programsimulationskillsspectrographsudden cardiac deathsupervised learningtooltwo-dimensionalultrasoundunderserved communityuser-friendlyvision sciencewearable device
项目摘要
PROJECT SUMMARY
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiomyopathy, affecting up to 0.5% of the
general population. HCM confers an increased risk of morbidity and mortality but remains clinically
underrecognized. Traditionally, the diagnosis of HCM has relied on comprehensive assessment by
echocardiography or magnetic resonance imaging, modalities which are not available for screening of the
general population. As novel disease-modifying therapies emerge, there is a need for efficient strategies to
improve HCM screening outside specialized centers. The research proposed in this post-doctoral fellowship will
leverage advanced computational methods and the expanding availability of wearable and portable technologies
to adapt machine learning algorithms for the efficient, point-of-care screening of HCM. In Aim 1, the applicant
proposes to use a large electrocardiographic (ECG) library to adapt ECG signals for use with wearable devices
and fine-tune those signals for the detection of HCM. Noising-denoising algorithms and cross-modal pre-training
with corresponding echocardiographic and cardiac magnetic resonance videos will ensure that the models are
robust to noise and learn key representations of the HCM phenotype, respectively. In Aim 2, single-view, two-
dimensional echocardiographic videos will be extracted, pre-processed, and augmented to simulate point-of-
care image acquisition. Through a self-supervised, contrastive pre-training approach, the applicant will build
data-efficient computational models to screen for HCM based on echocardiographic videos reflecting the quality
and unique challenges seen with point-of-care use. In Aim 3, the applicant proposes a prospective case-control
study of patients with and without HCM, who will undergo point-of-care electrocardiography and
echocardiography, to test the feasibility and real-world performance of a two-stage HCM screening protocol
based on Aims 1 and 2. The proposal is supported by strong mentorship from experts in biomedical machine
learning, computer vision, and implementation science. The Yale School of Medicine offers the facilities and
computational resources necessary to accomplish the research goals, whereas the Yale-New Haven Health
electronic health record and well-phenotyped echocardiographic and ECG libraries ensure access to a diverse
and representative population. The proposed period of mentored research will support the applicant’s training in
computer vision, advanced analytics, and medical informatics. The experience, data, and skillset acquired during
this period will further support the applicant in preparing for a successful career in the implementation science of
cardiovascular artificial intelligence technologies.
项目摘要
肥厚型心肌病(HCM)是最常见的遗传性心肌病,影响高达0.5%的
一般人口。肥厚型心肌病的发病率和死亡率的风险增加,但仍然临床
被低估了传统上,HCM的诊断依赖于全面的评估,
超声心动图或磁共振成像,不能用于筛选的模态
一般人口。随着新的疾病修饰疗法的出现,需要有效的策略来
在专业中心外加强HCM筛查。在这个博士后奖学金提出的研究将
利用先进的计算方法和不断扩大的可穿戴和便携式技术的可用性
使机器学习算法适应HCM的有效、即时筛查。在目标1中,申请人
建议使用大型心电图(ECG)库来调整ECG信号以供可穿戴设备使用
并微调这些信号以检测HCM。去噪-去噪算法和跨模态预训练
与相应的超声心动图和心脏磁共振视频将确保模型
分别对噪声和学习HCM表型的关键表示具有鲁棒性。在目标2中,单视图,两个-
三维超声心动图视频将被提取、预处理和增强,以模拟
护理图像采集。通过自我监督,对比预培训方法,申请人将建立
基于反映质量的超声心动图视频筛选HCM的数据高效计算模型
和床旁使用的独特挑战。在目标3中,申请人提出了一项前瞻性病例对照研究,
对患有和不患有HCM的患者进行的研究,这些患者将接受床旁心电图检查,
超声心动图,以测试两阶段HCM筛选方案的可行性和真实世界性能
根据目标1和2。该提案得到了生物医学机器专家的有力指导
学习、计算机视觉和实施科学。耶鲁大学医学院提供的设施和
实现研究目标所需的计算资源,而耶鲁-纽黑文健康
电子健康记录和良好的表型超声心动图和心电图图书馆确保了获得多样化的
有代表性的人口。建议的指导研究期间将支持申请人的培训,
计算机视觉、高级分析和医学信息学。在此期间获得的经验、数据和技能
这段时间将进一步支持申请人在实施科学的成功职业生涯做好准备,
心血管人工智能技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evangelos Oikonomou其他文献
Evangelos Oikonomou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 7.63万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 7.63万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 7.63万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 7.63万 - 项目类别:
Grant-in-Aid for Early-Career Scientists