Uncovering Nodal signaling and transcription factor interactions in somitic mesoderm development using single-cell deep learning methods
使用单细胞深度学习方法揭示体细胞中胚层发育中的节点信号传导和转录因子相互作用
基本信息
- 批准号:10749611
- 负责人:
- 金额:$ 4.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-16 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAnteriorAutomobile DrivingBindingBiologyCRISPR/Cas technologyCellsCellular AssayChromatinChromosome MappingClustered Regularly Interspaced Short Palindromic RepeatsCommunicationComputer ModelsComputer softwareComputing MethodologiesDNADNA BindingDataDevelopmentDissectionEmbryoEnhancersFamilyGene ExpressionGene Expression RegulationGenesGenetic ScreeningGenetic TranscriptionGenomicsIn Situ HybridizationKnock-outKnowledgeLearningLigandsLinkMapsMediatingMesodermMethodsModelingMutagenesisMutateMutationNeural Network SimulationNodalPhenotypePilot ProjectsPopulationProtein FamilyProteinsRegulator GenesRegulatory ElementResearchResolutionResourcesRoleSeriesSignal TransductionSiteSomitesSpecific qualifier valueSpecificityTailTestingTimeTrainingTraining ProgramsTransforming Growth Factor betaTransforming Growth Factor beta ReceptorsTransposaseUndifferentiatedUntranslated RNAVertebratesVisualWorkWritingZebrafishcell typecofactorcomputerized toolscostdata modelingdata toolsdeep learningdeep neural networkexperimental studyflexibilitygene discoverygenetic approachgenome-wideimprovedin silicolearning strategymembermutantnetwork modelsneural networknovelopen sourceprogramspromoterreceptorrecruitsingle cell technologysingle-cell RNA sequencingskillssomitogenesissuccesssyntaxtranscription factorzebrafish development
项目摘要
PROJECT SUMMARY/ABSTRACT
Major gaps remain in our knowledge of how transcription factors (TFs) interact to bind target
cis-regulatory elements (CREs) and dictate gene expression during development. There are ~1600 TFs in
vertebrates, and therefore traditional approaches of genetic screens with TF pairwise knockouts would require
>2.5 million experiments. Even with high throughput methods, this is not experimentally feasible. I will build
novel computational tools and deep neural networks and use multiplexed high-throughput single-cell Assay for
Transposase-Accessible Chromatin (scATAC-seq) data from zebrafish throughout development. These deep
neural networks will be used for in silico experiments to model CRE interactions to learn the cell-type
specific regulatory syntax of T-box proteins during development. These combinations of TF-TF
interactions from in silico experiments will then be tested with targeted CRISPR-Cas9 mutagenesis followed by
phenotype profiling with in situ hybridization and high-throughput low-cost scATAC and scRNA-seq.
In Aim 1, I will make a genome-wide cis-regulatory map of cell-type specific gene regulation of
zebrafish to uncover the role of Nodal signaling in zebrafish somitic mesoderm development. In zebrafish,
mutations to Nodal, a ligand to TGF-Beta receptor proteins, cause a phenotype of aberrantly undifferentiated
trunk somitic mesoderm and correctly differentiated tail somitic mesoderm. The mechanisms driving the
differences between these somites are unknown. To resolve this mystery, I will generate single-cell time series
wild-type and Nodal deficient embryos across the continuum of zebrafish development using multiplexed
high-throughput scATACseq and scRNAseq data. Computationally linking these data will represent a
comprehensive reference of zebrafish CRE and transcriptional development and a valuable resource for all
zebrafish biologists. By improving the software package, Cicero, to include flexible Poisson lognormal network
models, we can achieve the resolution necessary to find novel cell-type specific differences in
enhancer-promoter links during development and perturbationc
In Aims 2, I will train and validate a deep learning neural network model to predict pairs of transcription
factors that interact to activate cell-type specific gene programs. I will use these data and computational
tools to perform in silico experiments to learn the cell-type specific regulatory syntax of T-box TFs
during development. After performing in silico experiments using this neural network, I will rank candidate
TF-TF interactions to test using high-throughput methods for targeted CRISPR-Cas9 mutagenesis to knock out
TFs. I will apply this method to uncover the cis-regulatory syntax that allows T-box family transcription factors
to exert their DNA loci specificity.
项目总结/摘要
我们对转录因子(TF)如何相互作用以结合靶点的知识仍存在重大空白。
顺式调控元件(克雷斯),并在发育过程中决定基因表达。有~1600个TF,
脊椎动物,因此用TF成对敲除进行遗传筛选的传统方法将需要
250万次实验。即使使用高通量方法,这在实验上也是不可行的。我将建立
新的计算工具和深度神经网络,并使用多路复用高通量单细胞测定,
斑马鱼在整个发育过程中的转座酶可降解染色质(scATAC-seq)数据。这些深
神经网络将用于模拟CRE相互作用的计算机实验,以了解细胞类型
在发育过程中T-box蛋白的特定调控语法。这些TF-TF组合
然后将用靶向CRISPR-Cas9诱变,然后用靶向CRISPR-Cas9诱变来测试来自计算机实验的相互作用。
利用原位杂交和高通量低成本scATAC和scRNA-seq进行表型分析。
在目标1中,我将绘制一个全基因组的顺式调控图谱,研究细胞类型特异性基因调控,
Nodal信号在斑马鱼体细胞中胚层发育中的作用。在斑马鱼中,
Nodal是TGF-β受体蛋白的配体,Nodal的突变导致异常未分化的表型,
躯干体节中胚层和正确分化的尾部体节中胚层。驱动这一进程的机制
这些体节之间的差异是未知的。为了解开这个谜团,我将生成单细胞时间序列
野生型和Nodal缺陷胚胎在斑马鱼发育的连续性,使用多重
高通量scATACseq和scRNAseq数据。计算连接这些数据将代表一个
全面参考斑马鱼CRE和转录发展和宝贵的资源,为所有
斑马鱼生物学家通过改进Cicero软件包,使其包含灵活的Poisson对数正态网络
模型,我们可以实现必要的解决方案,找到新的细胞类型的具体差异,
增强子-启动子连接在发育和扰动过程中c
在目标2中,我将训练和验证深度学习神经网络模型来预测转录对
相互作用以激活细胞类型特异性基因程序的因子。我将使用这些数据和计算
用于进行计算机模拟实验以了解T盒TF的细胞类型特异性调控语法的工具
在发展过程中。在使用这个神经网络进行计算机实验后,我将对候选人进行排名。
使用高通量方法测试TF-TF相互作用以进行靶向CRISPR-Cas9诱变以敲除
TF。我将应用这种方法来揭示顺式调节语法,使T-box家族转录因子
来发挥它们的DNA位点特异性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Carter Mullen其他文献
Andrew Carter Mullen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Impact of tissue resident memory T cells on the neuro-immune pathophysiology of anterior eye disease
组织驻留记忆 T 细胞对前眼疾病神经免疫病理生理学的影响
- 批准号:
10556857 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Fear and anxiety circuit mechanisms in anterior hypothalamic nucleus
下丘脑前核的恐惧和焦虑环路机制
- 批准号:
10789153 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Elucidating signaling networks in Anterior Segment development, repair and diseases
阐明眼前节发育、修复和疾病中的信号网络
- 批准号:
10718122 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
The Intimate Interplay Between Keratoconus, Sex Hormones, and the Anterior Pituitary
圆锥角膜、性激素和垂体前叶之间的密切相互作用
- 批准号:
10746247 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Anterior Insula Projections for Alcohol Drinking/Anxiety Interactions in Female and Male Rats
雌性和雄性大鼠饮酒/焦虑相互作用的前岛叶预测
- 批准号:
10608759 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Impact of tissue resident memory T cells on the neuro-immunepathophysiology of anterior eye disease
组织驻留记忆 T 细胞对前眼疾病神经免疫病理生理学的影响
- 批准号:
10804810 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Investigation of the effect of anterior eye shape on myopia progression due to prolonged near work.
研究因长时间近距离工作而导致的前眼形状对近视进展的影响。
- 批准号:
23K09063 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation and characterization of anterior pituitary stem cells from human pluripotent stem cells
人多能干细胞垂体前叶干细胞的产生和表征
- 批准号:
23K08005 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Anterior cruciate ligament injury: towards a gendered environmental approach
前十字韧带损伤:走向性别环境方法
- 批准号:
485090 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Operating Grants
EASI-TOC: Endovascular Acute Stroke Intervention-Tandem OCclusion: atrial of acute cervical internal carotid artery stenting during endovascularthrombectomy for anterior circulation stroke
EASI-TOC:血管内急性卒中干预-串联闭塞:前循环卒中血管内血栓切除术期间急性颈内动脉心房支架置入术
- 批准号:
490056 - 财政年份:2023
- 资助金额:
$ 4.53万 - 项目类别:
Operating Grants