Elucidation of Nanostructure and Function of Spontaneous GABAergic Transmission at the Inhibitory Synapse
抑制性突触自发 GABA 能传递的纳米结构和功能的阐明
基本信息
- 批准号:10750025
- 负责人:
- 金额:$ 3.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAnxietyArtemisininsBindingBiological ModelsBrain-Derived Neurotrophic FactorCalciumCalcium SignalingCategoriesCompetitive BindingDataDiseaseDisease PathwayDrosophila genusElectron MicroscopyElectrophysiology (science)EquilibriumExcitatory SynapseGene ExpressionGenesGenetic TranscriptionGlutamatesHealthHippocampusImageInhibitory SynapseInterventionInvestigationKnowledgeLaboratoriesLinkMeasuresMediatingMental DepressionMental disordersMolecularNanostructuresNeurobiologyNeuromuscular JunctionNeuronsPathway interactionsPharmaceutical PreparationsPropertyRegulationResearchRoleScaffolding ProteinSchizophreniaSignal PathwaySignal TransductionStructureSupport SystemSynapsesSynaptic TransmissionTestingVisualizationWorkexperienceexperimental studygamma-Aminobutyric Acidgephyrininhibitory neuroninsightneuropsychiatric disorderneurotransmissionneurotrophic factornovelpharmacologicpostsynapticpresynapticreceptorscaffoldsegregationsmall moleculetooltranscriptome sequencingtransmission processultra high resolution
项目摘要
PROJECT SUMMARY
At the excitatory synapse, a heterogenous molecular layout creates a precise pre- and post-synaptic
structure that facilitates different modes of neurotransmission. The spatial segregation of neurotransmission
leads to the autonomous function of spontaneous glutamate release. The investigation into the
structure/function relationship at the excitatory synapse has facilitated the discovery of disease pathways
and targets for psychiatric disease intervention. However, aberrant inhibitory neurotransmission is also
implicated in numerous psychiatric illnesses including schizophrenia, depression, and anxiety. Despite the
fundamental importance of inhibitory neurotransmission in disease, few studies have investigated the
relationship between nanostructure and function at the inhibitory synapse. My preliminary data suggests a
segregation of action potential dependent and spontaneous neurotransmission at central inhibitory
GABAergic synapses, but how this segregation is achieved is unknown. Few studies have investigated the
inhibitory structure/function relationship due to the limited tools that allow for the selective manipulation of
different modes of inhibitory neurotransmission. I have generated preliminary data that a novel small
molecule drug, Artemisinin, selectively dysregulates inhibitory spontaneous release as it competitively binds
in the GABAAR-gephyrin binding pocket; providing a new pharmacological tool that will be utilized throughout
this proposal. This project will investigate the GABAergic synapse in two-fold by elucidating the post-synaptic
structure that segregates neurotransmission and how this structure leads to an autonomous function of
spontaneous GABAergic transmission in homeostatic plasticity. In primary hippocampal culture, Artemisinin
will be used as a tool to decrease GABAergic spontaneous release to investigate how this corresponds to
nanostructure and signaling pathways. The central hypothesis is GABAergic synapses have a specific post-
synaptic gephyrin scaffold and GABAAR nanostructure that facilitates an autonomous role of spontaneous
neurotransmission. Aim#1 will investigate how the post-synaptic structure segregates neurotransmission
using super resolution and electron microscopy to assess 1a. gephyrin clustering dynamics and 1b. GABAAR
subunit localization and clustering. Aim#2 will investigate the functional pathway this nanostructure
facilitates by delineating the role of spontaneous GABAergic neurotransmission in homeostatic plasticity.
2a. First downstream gene expression pathways will be assessed, specifically BDNF expression. 2b. Then
how spontaneous GABAergic signaling alters calcium dynamics to trigger gene transcription pathways will
be delineated. This research will elucidate the relationship between structure and function at the inhibitory
synapse, ultimately providing novel insight into the regulation of synaptic strength underlying
excitatory/inhibitory balance in health and disease.
项目总结
在兴奋性突触,不同的分子布局创造了精确的突触前和突触后
促进不同模式的神经传递的结构。神经传递的空间分离
导致自发释放谷氨酸的自主功能。对这一事件的调查
兴奋性突触的结构/功能关系促进了疾病途径的发现
以及精神疾病干预的目标。然而,异常抑制性神经传递也是
与多种精神疾病有关,包括精神分裂症、抑郁症和焦虑症。尽管
抑制性神经传递在疾病中的基本重要性,很少有研究调查
抑制性突触的纳米结构和功能之间的关系。我的初步数据显示
中枢抑制时动作电位依赖性和自发性神经传递的分离
GABA能突触,但这种分离是如何实现的尚不清楚。很少有研究调查过
由于允许选择性操作的工具有限,抑制结构/功能关系
抑制性神经传递的不同模式。我已经生成了初步数据,一部小说
分子药物青蒿素在竞争性结合时选择性地失调抑制性自发释放
在GABAAR-吉卜林结合口袋中;提供了一种新的药理工具,将在整个过程中使用
这项提议。这个项目将通过阐明突触后的方式从两个方面来研究GABA能突触
分离神经传递的结构,以及这种结构如何导致
动态平衡可塑性中的自发GABA能传递。在原代海马区培养中,青蒿素
将被用作减少GABA能自发释放的工具来研究这是如何对应的
纳米结构和信号通路。中心假说是GABA能突触有一个特定的后脑-
促进自发性自主作用的突触地卟啉支架和GABAAR纳米结构
神经传递。目标1将研究突触后结构如何分离神经传递
使用超分辨率和电子显微镜评估1a。吉卜林聚集动力学和1b。伽巴尔
亚基定位和聚类。Aim#2将研究这种纳米结构的功能途径
通过描述自发的GABA能神经传递在体内平衡可塑性中的作用而促进。
2A。首先将评估下游基因表达途径,特别是BDNF的表达。2B。然后
自发的GABA能信号如何改变钙动力学以触发基因转录途径
被描绘出来。这项研究将阐明结构和功能之间的关系在抑制
突触,最终提供了对潜在突触力量调节的新见解
健康和疾病中的兴奋/抑制平衡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natalie Guzikowski其他文献
Natalie Guzikowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 3.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Standard Grant