Elucidation of Nanostructure and Function of Spontaneous GABAergic Transmission at the Inhibitory Synapse
抑制性突触自发 GABA 能传递的纳米结构和功能的阐明
基本信息
- 批准号:10750025
- 负责人:
- 金额:$ 3.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAnxietyArtemisininsBindingBiological ModelsBrain-Derived Neurotrophic FactorCalciumCalcium SignalingCategoriesCompetitive BindingDataDiseaseDisease PathwayDrosophila genusElectron MicroscopyElectrophysiology (science)EquilibriumExcitatory SynapseGene ExpressionGenesGenetic TranscriptionGlutamatesHealthHippocampusImageInhibitory SynapseInterventionInvestigationKnowledgeLaboratoriesLinkMeasuresMediatingMental DepressionMental disordersMolecularNanostructuresNeurobiologyNeuromuscular JunctionNeuronsPathway interactionsPharmaceutical PreparationsPropertyRegulationResearchRoleScaffolding ProteinSchizophreniaSignal PathwaySignal TransductionStructureSupport SystemSynapsesSynaptic TransmissionTestingVisualizationWorkexperienceexperimental studygamma-Aminobutyric Acidgephyrininhibitory neuroninsightneuropsychiatric disorderneurotransmissionneurotrophic factornovelpharmacologicpostsynapticpresynapticreceptorscaffoldsegregationsmall moleculetooltranscriptome sequencingtransmission processultra high resolution
项目摘要
PROJECT SUMMARY
At the excitatory synapse, a heterogenous molecular layout creates a precise pre- and post-synaptic
structure that facilitates different modes of neurotransmission. The spatial segregation of neurotransmission
leads to the autonomous function of spontaneous glutamate release. The investigation into the
structure/function relationship at the excitatory synapse has facilitated the discovery of disease pathways
and targets for psychiatric disease intervention. However, aberrant inhibitory neurotransmission is also
implicated in numerous psychiatric illnesses including schizophrenia, depression, and anxiety. Despite the
fundamental importance of inhibitory neurotransmission in disease, few studies have investigated the
relationship between nanostructure and function at the inhibitory synapse. My preliminary data suggests a
segregation of action potential dependent and spontaneous neurotransmission at central inhibitory
GABAergic synapses, but how this segregation is achieved is unknown. Few studies have investigated the
inhibitory structure/function relationship due to the limited tools that allow for the selective manipulation of
different modes of inhibitory neurotransmission. I have generated preliminary data that a novel small
molecule drug, Artemisinin, selectively dysregulates inhibitory spontaneous release as it competitively binds
in the GABAAR-gephyrin binding pocket; providing a new pharmacological tool that will be utilized throughout
this proposal. This project will investigate the GABAergic synapse in two-fold by elucidating the post-synaptic
structure that segregates neurotransmission and how this structure leads to an autonomous function of
spontaneous GABAergic transmission in homeostatic plasticity. In primary hippocampal culture, Artemisinin
will be used as a tool to decrease GABAergic spontaneous release to investigate how this corresponds to
nanostructure and signaling pathways. The central hypothesis is GABAergic synapses have a specific post-
synaptic gephyrin scaffold and GABAAR nanostructure that facilitates an autonomous role of spontaneous
neurotransmission. Aim#1 will investigate how the post-synaptic structure segregates neurotransmission
using super resolution and electron microscopy to assess 1a. gephyrin clustering dynamics and 1b. GABAAR
subunit localization and clustering. Aim#2 will investigate the functional pathway this nanostructure
facilitates by delineating the role of spontaneous GABAergic neurotransmission in homeostatic plasticity.
2a. First downstream gene expression pathways will be assessed, specifically BDNF expression. 2b. Then
how spontaneous GABAergic signaling alters calcium dynamics to trigger gene transcription pathways will
be delineated. This research will elucidate the relationship between structure and function at the inhibitory
synapse, ultimately providing novel insight into the regulation of synaptic strength underlying
excitatory/inhibitory balance in health and disease.
项目摘要
在兴奋性突触中,异源分子布局会产生精确的前后突触后
促进神经传递模式的结构。神经传递的空间隔离
导致自动功能的自主功能的释放。对
兴奋性突触时的结构/功能关系促进了疾病途径的发现
和精神病干预的目标。但是,异常抑制性神经递质也是
涉及许多精神病,包括精神分裂症,抑郁和焦虑。尽管有
抑制性神经传递在疾病中的基本重要性,很少有研究研究
纳米结构与抑制性突触的功能之间的关系。我的初步数据表明
中枢抑制的动作潜力依赖性和自发神经传递的分离
GABA能突触,但是如何实现这种隔离是未知的。很少有研究调查
由于有限的工具,抑制性结构/功能关系允许选择性操纵
不同的抑制性神经传递模式。我已经生成了一个新颖的初步数据
分子药物,青蒿素,在竞争性结合时有选择性地调节抑制性自发释放
在Gabaar-Gephyrin结合口袋中;提供一种新的药理学工具,该工具将在整个过程中使用
这个建议。该项目将通过阐明后突触来调查两倍的GABA能突触
分离神经传递的结构以及该结构如何导致自主函数
稳态可塑性中的自发GABA能传播。在原发性海马培养中,青蒿素
将用作减少GABA能自发释放的工具,以研究这与
纳米结构和信号通路。中心假设是GABA能突触具有特定后
突触Gephyrin脚手架和Gabaar纳米结构,促进自动角色
神经传递。 AIM#1将调查后突触后结构如何分离神经传递
使用超级分辨率和电子显微镜评估1A。 Gephyrin聚类动力学和1B。加巴尔
亚基定位和聚类。 AIM#2将研究该纳米结构的功能途径
通过描述自发GABA能神经传递在稳态可塑性中的作用来促进。
2a。将评估第一个下游基因表达途径,特别是BDNF表达。 2b。然后
自发的GABA能信号如何改变钙动力学触发基因转录途径
被描述。这项研究将阐明抑制性的结构与功能之间的关系
突触,最终为调节突触强度的调节提供新颖的见解
健康和疾病的兴奋/抑制平衡。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Natalie Guzikowski其他文献
Natalie Guzikowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
- 批准号:
10656886 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
- 批准号:
10649292 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别:
High content analgesic screening from human nociceptors
从人类伤害感受器中筛选高含量镇痛剂
- 批准号:
10578042 - 财政年份:2023
- 资助金额:
$ 3.3万 - 项目类别: