Image-based risk assessment to identify women at high-risk for breast cancer
基于图像的风险评估可识别乳腺癌高危女性
基本信息
- 批准号:10759110
- 负责人:
- 金额:$ 40.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdipose tissueAlgorithmsAmericanArchitectureAreaArtificial IntelligenceBreastBreast Cancer DetectionBreast Cancer Early DetectionBreast Cancer Risk FactorCaringCause of DeathClinicalComputer softwareDataDatabasesDetectionDevelopmentDiagnosisEarly DiagnosisEnsureFeasibility StudiesFundingGrantHealth care facilityHigh Risk WomanHospitalsImageIncidenceInfrastructureLegal patentLife StyleLinkMachine LearningMalignant NeoplasmsMammary Gland ParenchymaMammographyManualsMeasurementMeasuresMedicalMedical DeviceMedical ImagingMedical RecordsMethodsModelingPatient riskPatient-Focused OutcomesPatientsPerformancePhasePopulationPositioning AttributePredictive FactorPreventive careProcessPrognostic FactorProtocols documentationQuestionnairesROC CurveReaderRecommendationResearchRiskRisk AssessmentRisk EstimateRisk FactorsRisk ReductionScanningScreening procedureSecureSmall Business Technology Transfer ResearchTeaching MethodTechnologyTechnology AssessmentTimeTissuesValidationVisitVisualizationWomanWorkagedautomated analysisbreast densitybreast pathologycancer diagnosiscancer invasivenessclinical practicecyber securitydensitydesigndigitalhigh riskimaging modalityimprovedinnovationinnovative technologiesmalignant breast neoplasmnovelnovel strategiesphase 1 studypreventrisk stratificationroutine screeningscreeningsupplemental screeningtimelinetumoryoung woman
项目摘要
7. PROJECT SUMMARY
Breast cancer is the most common cancer worldwide and the most common cancer diagnosed in American
women. While there has been good progress regarding detection and treatment methods, breast cancer remains
the primary cause of death from malignant tumors. Hence, there is a critical need for the development of novel
predictive and prognostic factors. Risk assessments are currently performed by medical professionals to identify
women that could benefit from enhanced breast surveillance or risk reduction methods. Unfortunately, most
diagnosed cases do not have an identifiable risk factor, making it a challenge to identify high risk women prior to
onset using classical risk assessments. This medical difficulty has resulted in the development of several artificial
intelligence and machine learning approaches being applied to screening mammograms to identify breast cancer
earlier. However, these approaches search for abnormalities that indicate an existing cancer and have been
found to not be generalizable to the entire screening population. It is becoming more common for younger women
to be diagnosed with breast cancer, and the cancers tend to be more aggressive. This Phase I proposes to
create a risk assessment product for mammography that is not based on machine learning but rather a novel
measurement of risky dense tissue. Alteration in the architecture and composition of microenvironment is a well-
recognized component of breast pathologies and some changes may occur prior to tumor onset. WAVED
Medical’s measurement is sensitive to these alternations in identifying areas of dense tissue that is tumor prone.
This feasibility study seeks to demonstrate that the novel measurement of risky dense breast tissue has the
potential to be implemented into classical risk models. Phase I specific aims are to 1) improve efficiency in
identifying risky dense tissue on mammograms by creating a secure database that contains preprocessed data
for optimized analysis, and 2) establish risky dense tissue as a better predictor of breast cancer than traditional
mammographic percent density (MPD), by showing risky dense tissue is more accurate in predicting breast
cancer than MPD. Follow-on Phase II efforts will include developing a platform and integrating WAVED into
hospital infrastructure for evaluating mammograms. These improvements will create a risk assessment product
that increases the accuracy of medical professionals at identifying high-risk patients and ensures patients are
receiving additional medical care, such as supplemental screening or risk reduction methods, to prevent invasive
cancer. Successful completion of the project has potential to advance state-of-the-art breast cancer assessments
to provide quantification of risky dense tissue to identify high-risk patients needing preventive care.
7.项目总结
乳腺癌是全世界最常见的癌症,也是美国人确诊的最常见的癌症。
女人。虽然在检测和治疗方法方面取得了很好的进展,但乳腺癌仍然存在
恶性肿瘤的主要死因。因此,对小说的发展有着迫切的需求
预测和预后因素。目前,风险评估是由医疗专业人员进行的,以确定
可以从加强乳房监测或降低风险方法中受益的妇女。不幸的是,大多数
确诊病例没有可识别的风险因素,这使得在感染前识别高危妇女成为一项挑战。
开始时使用经典的风险评估。这一医学难题导致了几种人工智能的发展
智能和机器学习方法被应用于乳房X光检查以识别乳腺癌
早些时候。然而,这些方法寻找表明存在癌症的异常情况,并已
发现不能推广到整个筛查人群。这在年轻女性中正变得越来越普遍
被诊断为乳腺癌,而且癌症往往更具侵袭性。此阶段第一阶段建议
创建用于乳房X光检查的风险评估产品,该产品不是基于机器学习,而是一种新的
测量有风险的致密组织。建筑和微环境组成的改变是一个很好的-
乳房病理的公认成分,某些变化可能发生在肿瘤发病之前。挥手
医学测量在识别易患肿瘤的致密组织区域时对这些变化很敏感。
这项可行性研究试图证明,对高风险致密乳房组织的新测量具有
有可能被应用到经典风险模型中。第一阶段的具体目标是:1)提高效率
通过创建包含预处理数据的安全数据库来识别乳房X光照片上的高风险致密组织
用于优化分析,以及2)建立高风险致密组织作为乳腺癌的更好预测因子
通过显示有风险的致密组织,乳房X光摄影百分比密度(MPD)在预测乳房方面更准确
癌症而不是MPD。第二阶段的后续工作将包括开发平台和将Waved集成到
评估乳房X光检查的医院基础设施。这些改进将创建一个风险评估产品
这提高了医疗专业人员识别高危患者的准确性,并确保患者
接受额外的医疗护理,如补充筛查或降低风险的方法,以防止侵入性
癌症。该项目的成功完成有可能推进最先进的乳腺癌评估
提供高风险致密组织的量化,以确定需要预防性护理的高危患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kendra Batchelder其他文献
Kendra Batchelder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 40.6万 - 项目类别:
Research Grant














{{item.name}}会员




