Substance Use Disorder Artificially Intelligent chatbot for screening, assessment & referral: SUD Bot
用于筛查、评估的药物使用障碍人工智能聊天机器人
基本信息
- 批准号:10757191
- 负责人:
- 金额:$ 30.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-15 至 2024-08-14
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAppointmentAppointments and SchedulesArtificial IntelligenceArtificial Intelligence platformBehaviorBehavior TherapyBehavioralBody Weight decreasedCaringCessation of lifeChronic DiseaseClinicColoradoCommunicationCommunitiesDataDecision MakingDiagnosisDrug usageEducationElectronic Health RecordEquityEvolutionExpert SystemsFDA approvedFee-for-Service PlansFeedbackFundingGoalsGroup InterviewsHealthHealth SciencesHealth Services AccessibilityHealth behaviorHealthcareHumanImprove AccessInformation SystemsInfrastructureIntentionInternetInterventionInterviewLinkMachine LearningMeasuresMedicalMedical DeviceMedicare/MedicaidMethamphetamineNational Heart, Lung, and Blood InstituteNatural Language ProcessingOpioidOutcomeOverdosePatientsPersonsPharmaceutical PreparationsPhasePrivatizationProfessional counselorProviderPublic HealthRecording of previous eventsRecoveryReminder SystemsResearchResourcesScheduleScienceSecureServicesSmall Business Technology Transfer ResearchStimulantSubstance Use DisorderSystemTestingTexasText MessagingUnited States National Institutes of HealthUnited States Preventative Services Task ForceUniversitiesVoiceWorkaccurate diagnosisagedbarrier to carechatbotcocaine usecommercializationdata miningdesigneffective therapyfallsfeasibility testingfirewallfollow-uphealth assessmenthealth care deliveryhealth communicationhealth equityillicit drug useimprovedinnovationmachine learning modelmedication compliancemembermethamphetamine usemultiple drug usenew technologynext generationnovel therapeuticsopioid epidemicpeerpeer supportphase 1 studyrandomized, clinical trialsrecovery servicesrecruitresponsesatisfactionscreeningscreening guidelinesservice deliverysmoking cessationsocialsocial stigmastimulant usesuccesssupportive environmenttoolusability
项目摘要
ABSTRACT
The opioid epidemic is considered one of the most severe public health crises we are facing in
the U.S. and is worsened by use of stimulants such as methamphetamine. The US Preventive
Services Task Force (USPSTF) recommends screening for unhealthy drug use accompanied by
offers of and referrals to services that include accurate diagnosis, effective treatment and
appropriate care of a substance use disorder (SUD) for persons aged 18 and older. Automating
screening and assessment for SUD and removing stigmas and other barriers to treatment can
improve the scale, efficiency, and equitable access to SUD care. While artificial intelligence (AI)
chatbots using natural language processing (NLP) and Machine Learning (ML) are increasingly
common, they (a) fall short of systems that mimic social conversations with persuasive
responses to motivate action (b) are not interoperable with service delivery to link users
immediately with clinic appointments and (c) aren’t FDA approved under mandates to regulate
medical devices that complete assessments for medical outcomes. Specific to SUD, there is a
compelling need for AI chatbots that minimize stigma associated with SUD care and resources.
In this Phase I STTR, Clinic Chat, LLC, will build on prior research showing the success of their
chatbots to support improved access to chronic illness medication in partnership with Be Well
Texas, a provider of SUD services to develop and beta-test the feasibility, navigability, and
acceptability of using a next generation AI chatbot, called SUD Bot, to facilitate access to and
utilization of SUD services and resources. We aim to 1: Enhance existing Clinic Chat AI
Chatbots with (a) persuasive SUD screening and treatment messaging and (b) infrastructure
with capacity to simulate human conversation and be accessible in English and Spanish via
multiple platforms, i.e., text messaging, including voice and video; 2: Build fast healthcare
interoperative resource (FHIR) linkages that will allow users to self-schedule appointments
for treatment or to access peer support through the recovery network within Be Well Texas; and
3: Conduct a beta-test to determine the functionality and navigability of the FHIR-enabled
SUD Bot system. We will recruit 200 users to use the FHIR-enabled SUD Bot system in three
weeklong waves interspersed with iterative system refinement based on user feedback.
Completion of this Phase I study will generate an FHIR-enabled minimum viable product (MVP)
with initial functionality and navigability feedback ready for a Phase II STTR randomized clinical
trial testing system efficacy. Our goal is to have an effective and scalable tool that can be
adapted for use in any organization delivering SUD services and commercialized through fees
for service or Medicaid/Medicare reimbursement.
摘要
阿片类药物流行病被认为是我们面临的最严重的公共卫生危机之一,
美国,并因使用兴奋剂如甲基苯丙胺而恶化。美国预防
服务工作组(USPSTF)建议筛查不健康的药物使用,
提供和转介服务,包括准确的诊断,有效的治疗,
为18岁及以上的人提供物质使用障碍(SUD)的适当护理。自动化
对SUD进行筛查和评估,消除污名和其他治疗障碍,
提高可持续发展保健的规模、效率和公平获取。虽然人工智能(AI)
使用自然语言处理(NLP)和机器学习(ML)的聊天机器人越来越多
常见的是,它们(a)缺乏模仿具有说服力的社交对话的系统
激励行动的响应(B)不能与链接用户的服务交付互操作
立即与诊所预约和(c)没有FDA批准的授权,以规范
完成医疗结果评估的医疗器械。具体到SUD,
迫切需要人工智能聊天机器人,以最大限度地减少与SUD护理和资源相关的耻辱。
在这个第一阶段STTR,诊所聊天,有限责任公司,将建立在先前的研究表明,他们的成功,
聊天机器人与Be Well合作,支持改善慢性病药物的获取
得克萨斯州,SUD服务的提供商,开发和测试的可行性,导航性,
使用下一代人工智能聊天机器人(称为SUD Bot)的可接受性,
利用可持续发展司的服务和资源。我们的目标是1:增强现有的诊所聊天AI
聊天机器人具有(a)有说服力的SUD筛查和治疗消息传递以及(B)基础设施
具有模拟人类对话的能力,并可通过以下方式使用英语和西班牙语进行访问:
多个平台,即,短信,包括语音和视频; 2:建立快速医疗保健
互操作资源(FHIR)链接,允许用户自行安排预约
治疗或通过Be Well Texas内的恢复网络获得同行支持;以及
3:进行beta测试,以确定FHIR启用的
SUD Bot系统。我们将招募200名用户使用支持FHIR的SUD Bot系统,
基于用户反馈的迭代系统细化。
完成该I期研究将产生一个FHIR使能的最小可行产品(MVP)
具有初始功能和导航性反馈,可用于II期STTR随机临床试验
试验测试系统的功效。我们的目标是有一个有效的和可扩展的工具,可以
适用于任何提供SUD服务的组织,并通过收费进行商业化
服务或医疗补助/医疗保险报销。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHEANA S BULL其他文献
SHEANA S BULL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHEANA S BULL', 18)}}的其他基金
Using artificially intelligent text messaging technology to improve American Heart Association's Life's Simple 7 Health Behaviors: LS7 Bot + Backup
利用人工智能短信技术改善美国心脏协会的生活简单7个健康行为:LS7 Bot Backup
- 批准号:
10649884 - 财政年份:2023
- 资助金额:
$ 30.05万 - 项目类别:
Personalized Patient data and behavioral nudges to improve adherence to chronic cardiovascular medications
个性化的患者数据和行为提示,以提高对慢性心血管药物的依从性
- 批准号:
10200136 - 财政年份:2018
- 资助金额:
$ 30.05万 - 项目类别:
Personalized Patient data and behavioral nudges to improve adherence to chronic cardiovascular medications
个性化的患者数据和行为提示,以提高对慢性心血管药物的依从性
- 批准号:
9750927 - 财政年份:2018
- 资助金额:
$ 30.05万 - 项目类别:
Personalized Patient data and behavioral nudges to improve adherence to chronic cardiovascular medications
个性化的患者数据和行为提示,以提高对慢性心血管药物的依从性
- 批准号:
10448390 - 财政年份:2018
- 资助金额:
$ 30.05万 - 项目类别:
Text Messaging for Abstinence and HIV Risk Prevention
用于禁欲和艾滋病毒风险预防的短信
- 批准号:
7501978 - 财政年份:2007
- 资助金额:
$ 30.05万 - 项目类别:
Text Messaging for Abstinence and HIV Risk Prevention
用于禁欲和艾滋病毒风险预防的短信
- 批准号:
7336217 - 财政年份:2007
- 资助金额:
$ 30.05万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 30.05万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 30.05万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 30.05万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 30.05万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 30.05万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 30.05万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 30.05万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 30.05万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 30.05万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 30.05万 - 项目类别:
Continuing Grant