Deep Learning Assessment of the Right Ventricle: Function, Etiology, and Prognosis
右心室的深度学习评估:功能、病因和预后
基本信息
- 批准号:10756662
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdvisory CommitteesArchitectureArrhythmogenic Right Ventricular DysplasiaAwardCardiovascular DiseasesCardiovascular systemCategoriesCause of DeathCessation of lifeCharacteristicsClassificationClinicalCommunitiesComputer Vision SystemsCoronary ArteriosclerosisDataData ScienceData SetDerivation procedureDiagnosisDiseaseDisease OutcomeDissectionEarly DiagnosisEchocardiographyEngineeringEpidemiologyEtiologyEvaluationFramingham Heart StudyFutureGoalsHealth systemHealthcareHealthcare SystemsHeart failureHeterogeneityHospitalsHumanImageIncidenceLearningMachine LearningMapsMeasuresMedical ImagingMedicineMentorsModelingMorbidity - disease rateMorphologyMotionMulti-Ethnic Study of AtherosclerosisNatureOutcomeParticipantPatientsPatternPerformancePhasePhenotypePhysiciansPrognosisProgram DevelopmentProspective cohortPulmonary EmbolismResearchResearch PersonnelRight Ventricular DysfunctionRight Ventricular FunctionRight ventricular structureRiskRisk FactorsSamplingScientistSemanticsStandardizationStrokeTechniquesTrainingTranslational ResearchUnited StatesValidationVariantVentricularcardiovascular imagingcardiovascular risk factorcareercareer developmentcohortcommunity based carecomputer sciencecostdeep learningdeep learning algorithmdeep learning modeldeep neural networkdesignhands on researchhealthcare communityheart imagingimage translationimaging scienceimprovedmortalityneural networkneural network architecturenoveloutcome predictionperformance testspopulation basedpredictive modelingprognosticprogramspublic health relevancepulmonary arterial hypertensionskillsspatiotemporalstatisticsstudy populationsuccesstemporal measurement
项目摘要
ABSTRACT
Heart failure imposes a tremendous burden of morbidity and mortality, costing the United States in excess of
$31 billion annually. An increasingly recognized major determinant of outcomes in heart failure is right ventricular
(RV) dysfunction. However, the nature and character of RV contribution to cardiovascular outcomes remains
poorly understood, largely due to the imprecision of imaging and interpretation of RV morphology and function.
Echocardiography, with its high temporal resolution and low cost of acquisition, serves as frontline cardiovascular
imaging and a mainstay in approaches to assessing RV morphology and function. However, echocardiographic
imaging of the RV is limited by factors that include technical variation in image acquisition and heterogeneity in
image assessment as well as overall interpretation. We postulate that deep learning based phenotyping can
offer the ability to not only more precisely characterize RV function but also classify RV imaging phenotypes
according to etiologic disease states and, even further, refine prognostic evaluations of future cardiovascular
risk. Therefore, in Aim 1, we will use video-based deep learning segmentation models to assess RV function,
evaluate its cross-sectional relation with a range of expert-measured parameters, and examine its variation in
the context of patient characteristics derived from large hospital-based cohorts. In Aim 2, we will use video-based
deep learning models to produce imaging-based classification of RV disease and assess the ability of
unsupervised approaches to classify RV dysfunction into various categories of disease etiology. In Aim 3, we
will use models developed in part from training in Aims 1 and 2 to predict major cardiovascular outcomes
including heart failure in addition to coronary artery disease, stroke, and cardiovascular death in both hospital-
based and community-based cohorts. The overarching goal of this proposal is to improve the precision and
standardization of RV phenotyping and determine the extent to which deep learning models can augment human
assessment of the RV. This research will be accomplished in the setting of a comprehensive career development
program designed to provide the candidate with the skills needed to become an independent physician-scientist
in cardiovascular medicine and translational imaging science. An advisory committee of established
scientists/mentors in the fields of cardiac imaging, deep learning, data science, and translational science will
guide the candidate in his transition to scientific independence over the course of the award period.
抽象的
心力衰竭造成了巨大的发病率和死亡率负担,给美国造成了超过
每年 310 亿美元。越来越多的人认识到心力衰竭结局的主要决定因素是右心室
(RV)功能障碍。然而,RV 对心血管结局的贡献的性质和特征仍然存在
人们对此知之甚少,很大程度上是由于 RV 形态和功能的成像和解释不精确。
超声心动图具有高时间分辨率和低采集成本,是心血管疾病的一线治疗方法。
成像和评估 RV 形态和功能的方法的支柱。然而,超声心动图
RV 的成像受到多种因素的限制,包括图像采集的技术变化和图像的异质性
图像评估以及整体解释。我们假设基于深度学习的表型分析可以
不仅能够更精确地表征 RV 功能,还能对 RV 成像表型进行分类
根据病因疾病状态,进一步完善未来心血管的预后评估
风险。因此,在目标 1 中,我们将使用基于视频的深度学习分割模型来评估 RV 功能,
评估其与一系列专家测量参数的横截面关系,并检查其变化
来自大型医院队列的患者特征背景。在目标 2 中,我们将使用基于视频的
深度学习模型产生基于成像的 RV 疾病分类并评估
将 RV 功能障碍分类为各种疾病病因类别的无监督方法。在目标 3 中,我们
将使用部分通过目标 1 和 2 的训练开发的模型来预测主要心血管结局
除了冠状动脉疾病、中风和心血管死亡外,还包括心力衰竭
基于和基于社区的群体。该提案的总体目标是提高精度和
RV 表型标准化并确定深度学习模型可以在多大程度上增强人类
RV 的评估。这项研究将在全面职业发展的背景下完成
旨在为候选人提供成为独立医师科学家所需技能的计划
心血管医学和转化成像科学。设立顾问委员会
心脏成像、深度学习、数据科学和转化科学领域的科学家/导师将
指导候选人在获奖期间过渡到科学独立。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Ouyang其他文献
David Ouyang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Ouyang', 18)}}的其他基金
Deep Learning Assessment of the Right Ventricle: Function, Etiology, and Prognosis
右心室的深度学习评估:功能、病因和预后
- 批准号:
10185865 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Deep Learning Assessment of the Right Ventricle: Function, Etiology, and Prognosis
右心室的深度学习评估:功能、病因和预后
- 批准号:
10372172 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
相似海外基金
Toward a Political Theory of Bioethics: Participation, Representation, and Deliberation on Federal Bioethics Advisory Committees
迈向生命伦理学的政治理论:联邦生命伦理学咨询委员会的参与、代表和审议
- 批准号:
0451289 - 财政年份:2005
- 资助金额:
$ 24.9万 - 项目类别:
Standard Grant