A deep learning algorithm to detect signs of cognitive impairment in electronic health records
用于检测电子健康记录中认知障碍迹象的深度学习算法
基本信息
- 批准号:10900991
- 负责人:
- 金额:$ 84.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountabilityActive LearningAddressAlgorithmsAlzheimer&aposs disease diagnosisAlzheimer&aposs disease related dementiaAppointmentArtificial IntelligenceBehavioralCaringCharacteristicsClassificationClinicalCodeCognitiveCohort StudiesCommunitiesComplexComputer softwareComputerized Medical RecordComputersDataData ElementData SetDatabasesDementiaDetectionDiagnosisElderlyElectronic Health RecordElectronicsEmergency department visitEnsureEntropyEpidemiologistEvaluationFunctional disorderFutureGeographyGuidelinesHealthHealth Care CostsHealth ProfessionalHealth SciencesHealth systemHealthcareImpaired cognitionIndividualInstitutionInterventionKnowledgeLabelLearningMeasuresMedical RecordsMethodsModelingNatural Language ProcessingOnline SystemsOutcomeOutcome StudyPatient Care ManagementPatientsPatternPerformancePharmaceutical PreparationsProviderRecording of previous eventsReference StandardsResearchResearch PersonnelResearch PriorityResourcesSample SizeSamplingScientistSiteSourceSpecialistSpecific qualifier valueStructureSymptomsTechnologyTestingTexasTextTrainingUniversitiesValidationWisconsinWorkadjudicationalgorithmic biasannotation systemburden of illnessclinical careclinical phenotypedeep learningdeep learning algorithmdeep learning modeldemographicsdrug repurposingepidemiology studyhealth care service utilizationhealth care settingsimprovedinnovationlearning strategymild cognitive impairmentmultidisciplinarypragmatic trialresearch studyscreeningsource localizationstructured datatoolunstructured data
项目摘要
Alzheimer’s Disease and Related Dementias (AD/ADRD) outcomes from real-world data, such as electronic
health records (EHR), offer the possibility of examining a wide variety of research questions that cannot be
answered efficiently—or at all—in other settings. A key challenge is that AD/ADRD is under-recognized in the
community, under-diagnosed by healthcare professionals, and under-coded in claims data—and can be
mislabeled in any setting. Thus, approaches relying on dementia diagnosis codes or medications suffer from
inaccuracies in these data. EHR has a wealth of information in clinical notes, patient health history, and health
system interactions that often contain signs of cognitive decline. Deep learning algorithms can leverage and
learn from these complex text and data patterns in EHR. In this proposal, we aim to develop and evaluate a
deep learning algorithm to improve the detection of cognitive impairment due to underlying AD/ADRD
pathophysiology (including cognitive concerns, mild cognitive impairment, and dementia) using the EHR of
three large healthcare institutions. For training and evaluation of the algorithm, we will use a “seed” reference
standard set with detailed chart review and adjudication of cognitive diagnosis by an expert clinician (n=1,000),
and then apply active learning strategies with diversity sampling to better reflect the characteristics of US older
adults and iteratively increase sample size to n=20,000. We will rigorously evaluate the algorithm using EHR
from all three institutions, and develop openly available guidelines and resources for the research community.
Our specific aims are: 1) To develop and evaluate a deep learning NLP tool to identify patients with cognitive
impairment using EHR at one institution; 2) To refine and evaluate the performance of our EHR deep learning
algorithm at two other healthcare institutions; and 3) To develop open guidelines, resources, and tools for EHR
data use in dementia research. We will measure the marginal improvement in accuracy of our deep learning-
based classification relative to models based on diagnosis codes and medications alone, and characterize the
predictors of poor model performance, both to improve the model and to understand potential biases. As such,
our tool will provide a better understanding of the limitations of using diagnosis codes and/or medications in
dementia research. Cutting-edge deep learning algorithms have been applied to many real-world tasks but in a
limited manner to AD/ADRD. We anticipate that our state-of-the-art deep learning algorithm, which will be
rigorously developed and validated with large representative datasets at multiple institutions, will more
efficiently and accurately detect signs of cognitive impairment and can be readily deployed by practitioners.
Improved screening of cognitive impairment in EHR will enhance dementia research studies and enable large-
scale pragmatic trails. In the future, we hope, the proposed tool will also be useful in clinical settings to flag
patients with cognitive impairment who could benefit from an evaluation or be referred to specialist care.
阿尔茨海默病和相关痴呆症 (AD/ADRD) 来自真实世界数据(例如电子数据)的结果
健康记录 (EHR),提供了检查各种无法通过研究解决的研究问题的可能性
在其他情况下,可以有效地或完全回答。一个关键的挑战是 AD/ADRD 在全球范围内未被充分认识。
社区、医疗保健专业人员的诊断不足以及索赔数据的编码不足,并且可以
在任何设置中都贴错标签。因此,依赖痴呆症诊断代码或药物的方法会受到影响
这些数据不准确。 EHR 拥有丰富的临床记录、患者健康史和健康信息
系统交互通常包含认知能力下降的迹象。深度学习算法可以利用和
从 EHR 中这些复杂的文本和数据模式中学习。在本提案中,我们的目标是开发和评估
深度学习算法可改善对潜在 AD/ADRD 所致认知障碍的检测
使用 EHR 进行病理生理学(包括认知问题、轻度认知障碍和痴呆)
三大医疗机构。为了训练和评估算法,我们将使用“种子”参考
由临床专家 (n=1,000) 进行的包含详细图表审查和认知诊断判定的标准集,
然后应用具有多样性抽样的主动学习策略,以更好地反映美国老年人的特征
成人并迭代地将样本量增加至 n=20,000。我们将使用 EHR 严格评估该算法
来自所有三个机构,并为研究界制定公开可用的指南和资源。
我们的具体目标是:1)开发和评估深度学习 NLP 工具来识别患有认知障碍的患者
在一个机构使用 EHR 造成的损害; 2) 完善和评估我们的 EHR 深度学习的性能
另外两家医疗机构的算法; 3) 为 EHR 制定开放的指南、资源和工具
痴呆症研究中的数据使用。我们将衡量深度学习准确性的边际改进 -
相对于仅基于诊断代码和药物的模型的分类,并表征
模型性能不佳的预测因素,既可以改进模型,也可以了解潜在的偏差。像这样,
我们的工具将帮助您更好地了解使用诊断代码和/或药物的局限性
痴呆症研究。尖端的深度学习算法已应用于许多现实世界的任务,但在
AD/ADRD 的限制方式。我们预计我们最先进的深度学习算法将
通过多个机构的大型代表性数据集进行严格开发和验证,将更多
有效、准确地检测认知障碍的迹象,并且可以由从业者轻松部署。
改进电子病历中认知障碍的筛查将加强痴呆症研究,并使大规模
规模务实的路径。我们希望,将来所提出的工具也将在临床环境中有用,以标记
患有认知障碍的患者可以从评估中受益或被转诊至专科护理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudeshna Das其他文献
Sudeshna Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sudeshna Das', 18)}}的其他基金
相似海外基金
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 84.34万 - 项目类别:
Standard Grant
Building a Calculus Active Learning Environment Equally Beneficial Across a Diverse Student Population
建立一个对不同学生群体同样有益的微积分主动学习环境
- 批准号:
2315747 - 财政年份:2024
- 资助金额:
$ 84.34万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315699 - 财政年份:2024
- 资助金额:
$ 84.34万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Defending Cyberspace through Active Learning
CyberCorps 服务奖学金:通过主动学习捍卫网络空间
- 批准号:
2336586 - 财政年份:2024
- 资助金额:
$ 84.34万 - 项目类别:
Continuing Grant
Project Visibility: Understanding the Experiences of Black Students in Active Learning Mathematics Courses in a Hispanic-Serving Institution Context
项目可见性:了解黑人学生在西班牙裔服务机构背景下主动学习数学课程的经历
- 批准号:
2337029 - 财政年份:2024
- 资助金额:
$ 84.34万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315697 - 财政年份:2024
- 资助金额:
$ 84.34万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315696 - 财政年份:2024
- 资助金额:
$ 84.34万 - 项目类别:
Standard Grant
Conference: Active Learning Communities in Biochemistry
会议:生物化学主动学习社区
- 批准号:
2411535 - 财政年份:2024
- 资助金额:
$ 84.34万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315698 - 财政年份:2024
- 资助金额:
$ 84.34万 - 项目类别:
Standard Grant
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315701 - 财政年份:2024
- 资助金额:
$ 84.34万 - 项目类别:
Standard Grant














{{item.name}}会员




