Lasting Impacts: Dynamic, Fully Natural Bioprinted 3D Human Neurovascular Biomimetic Model to Study Traumatic Brain Injury Pathophysiology
持久影响:用于研究创伤性脑损伤病理生理学的动态、完全自然的生物打印 3D 人体神经血管仿生模型
基本信息
- 批准号:10916751
- 负责人:
- 金额:$ 60.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAcuteAddressAffectAlzheimer&aposs DiseaseAnimal ExperimentsAnimalsAstrocytesBiological AssayBiological ModelsBiomechanicsBiomimeticsBloodBlood - brain barrier anatomyBlood Coagulation DisordersBlood VesselsBlood brain barrier dysfunctionBostonBrainBrain InjuriesBrain PathologyCell MaturationCerebrovascular CirculationCerebrovascular systemChronicCoagulation ProcessCognitive deficitsCollaborationsCompanionsComputer SimulationDefectEconomicsEndotheliumEngineeringFunctional disorderFundingGoalsHumanImpairmentIn SituIn VitroIncubatedIndividualInjuryInvestigationLaboratoriesLifeLinkLiquid substanceLocationMapsMeasurementMechanicsMembraneMemory impairmentMicroscopicMicrovascular DysfunctionMilitary PersonnelModelingMolecularMorbidity - disease rateNerve DegenerationNervous System TraumaNeurodegenerative DisordersNeuronsOpticsOutcomePathologyPatientsPercussionPericytesPermeabilityPersonsPhasePhenotypePhysiologicalPlasmaPreparationPropertyPublic HealthResearchRiskRoleSeveritiesSiteSliceSpecimenStructureSurvivorsTauopathiesTestingTherapeuticTimeTissuesTraumaTraumatic Brain InjuryUnited States National Institutes of HealthUniversitiesVariantVascular DiseasesVisualizationWorkbehavioral impairmentbiofabricationbiomaterial compatibilitybiophysical propertiesbioprintingblood-brain barrier disruptioncell typechronic traumatic encephalopathydementia riskdisabilityexperiencefluid flowimplantationimprovedin silicoin vitro Modelin vivoindexinginduced pluripotent stem cellinnovationinstrumentinstrumentationinterestinterstitialmedical schoolsmolecular pathologymortalitymultidisciplinaryneuralneuropathologyneuropsychiatryneurovascularneurovascular couplingneurovascular unitprogramspsychosocialresponseresponse to brain injuryresponse to injuryshear stresssimulationspatiotemporaltau Proteinstau-1vascular contributionsvascular injury
项目摘要
ABSTRACT
Lasting impacts: dynamic, fully natural bioprinted 3d human neurovascular biomimetic to study traumatic
brain injury pathophysiology
Every year an estimated 2.5 million people sustain a traumatic brain injury (TBI), and many survivors experience
subsequent long-term cognitive deficits, sensorimotor impairments, and neuropsychiatric disability that result in
profound psychosocial and economic consequences for affected individuals. Acute and chronic effects of
neurotrauma represent leading causes of mortality, morbidity, and long-term disability in the US and around the
world. Although TBI is clearly defined neuropathologically, less well-defined is the relationship between the initial
impact and the resulting progression of trauma-related neurovascular pathology. This multidisciplinary multi-PI
proposal is responsive to the Trans-Agency Blood-Brain Interface Program (RFA-HL-20-021, R61/R33) and
builds on a longstanding collaboration between Lawrence Livermore National Laboratory, Boston University
School of Medicine, and the NIH/NIA-funded Boston University Alzheimer’s Disease Center to address
fundamental mechanisms underpinning acute and chronic effects of neurotrauma, including trauma-induced
microvascular injury and latent tau protein neurodegenerative pathologies associated with chronic traumatic
encephalopathy (CTE). This project will develop and characterize a human in vitro perfusable neurovascular unit
(NVU) model with the overarching goal of identifying biomechanical triggers and molecular-cellular responses to
brain injury that determine the location, severity, and progression of traumatic microvascular injury (TMI), blood-
brain barrier (BBB) disruption, and phosphorylated tau proteinopathy. To accomplish this objective, this work will
leverage an existing BBB platform to biofabricate a 3D multi-cellular dynamic human NVU biomimetic with
perfusable endothelialized vasculature. The resulting optically clear NVU platform will enable systematic
interrogation of the human cerebrovasculature, including all human NVU cell types, with spatiotemporal control
and structure-function measurements in real-time. In the R61 phase, we will modify our existing 3D-printed BBB
model to include culture of human induced pluripotent stem cell (iPSC)-derived endothelia, pericytes, astrocytes,
and neurons. Effects of cellular composition, structure-function relations, fluid flow dynamics (intravascular,
interstitial), and culture incubation conditions on iPSC maturation will be investigated. In the R61 phase, we will
develop a platform-compatible injury instrument informed by computational simulations to match loads used in
in vivo animal studies. Embedded markers in the 3D-printed model will enable direct measurement and
visualization of time-varying strain during impact as a function of vascular, glial, and neuronal pathology and
compromised function (R33 phase). In addition, we will investigate molecular, cellular, and functional effects of
secondary damage post-TBI injury. Results will be informed by companion studies in experimental animals and
clinicopathological correlation with unique human brain specimens. This project will contribute to fundamental
understanding of brain injury biomechanics and relationship to acute and chronic effects of neurotrauma in the
human brain.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LEE E. GOLDSTEIN其他文献
LEE E. GOLDSTEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LEE E. GOLDSTEIN', 18)}}的其他基金
Impact of Toxic Metal Exposures in Novel Genetic Mouse Models of Late-Onset Alzheimer's Disease
有毒金属暴露对迟发性阿尔茨海默病的新型基因小鼠模型的影响
- 批准号:
10901030 - 财政年份:2023
- 资助金额:
$ 60.82万 - 项目类别:
Lasting Impacts: Dynamic, Fully Natural Bioprinted 3D Human Neurovascular Biomimetic Model to Study Traumatic Brain Injury Pathophysiology
持久影响:用于研究创伤性脑损伤病理生理学的动态、完全自然的生物打印 3D 人体神经血管仿生模型
- 批准号:
10318506 - 财政年份:2021
- 资助金额:
$ 60.82万 - 项目类别:
Lens β-Amyloid Biomarker for Early Detection of Preclinical Alzheimer's Disease in the Framingham Study
Framingham 研究中用于早期检测临床前阿尔茨海默病的晶状体 β-淀粉样蛋白生物标志物
- 批准号:
10214179 - 财政年份:2021
- 资助金额:
$ 60.82万 - 项目类别:
TBI identification and monitoring through retinal scanning
通过视网膜扫描进行 TBI 识别和监测
- 批准号:
10383172 - 财政年份:2020
- 资助金额:
$ 60.82万 - 项目类别:
TBI Identification and Monitoring Through Retinal Scanning
通过视网膜扫描识别和监测 TBI
- 批准号:
10593933 - 财政年份:2020
- 资助金额:
$ 60.82万 - 项目类别:
Big data and small molecules for Alzheimer's disease
阿尔茨海默病的大数据和小分子
- 批准号:
10168854 - 财政年份:2019
- 资助金额:
$ 60.82万 - 项目类别:
Big data and small molecules for Alzheimer's disease
阿尔茨海默病的大数据和小分子
- 批准号:
10217833 - 财政年份:2019
- 资助金额:
$ 60.82万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 60.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 60.82万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 60.82万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 60.82万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 60.82万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 60.82万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 60.82万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 60.82万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 60.82万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 60.82万 - 项目类别:
Standard Grant














{{item.name}}会员




