Automated Assessment of Neurodevelopment in Infants at Risk for Motor Disability

自动评估有运动障碍风险的婴儿的神经发育

基本信息

  • 批准号:
    10620100
  • 负责人:
  • 金额:
    $ 63.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-07 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT The overall goal of this R01 project is to develop an automated assessment system that can capitalize on state of the art sensing technologies and machine learning algorithms to enable accurate and early detection of infants at risk for neurodevelopmental disabilities. In the USA, 1 in 10 infants are born at risk for these disabilities. For children with neurodevelopmental disabilities, early treatment in the first year of life improves long-term outcomes. However, we are currently held back by inadequacies of available clinical tests to measure and predict impairment. Existing tests are hard to administer, require specialized training, and have limited long- term predictive value. There is a critical need to develop an objective, accurate, easy-to-use tool for the early prediction of long-term physical disability. The field of pediatrics and infant development would greatly benefit from a quantitative score that would correlate with existing clinical measures used today to detect movement impairments in very young infants. To realize a new generation of tests that will be easy to administer, we will obtain large datasets of infants playing in an instrumented gym or simply being recorded while moving in a supine posture. Video and sensor data analyses will convert movement into feature vectors based on our knowledge of the problem domain. Our approach will use machine learning to relate these feature vectors to currently recommended clinical tests or other ground truth information. The power of this design is that algorithms can utilize many aspects of movement to produce the relevant scores. Our preliminary data allows us to lay the following aims: 1)Aim 1: To assess concurrent validity of a multimodal instrumented gym with existing clinical tools. Here, using 150 infants (75 with early brain injury and 75 controls), we will focus on converting data from an instrumented gym into estimates of the standard clinical tests; 2)Aim 2: To develop a computer vision-based algorithm to quantify infant motor performance from single camera video. Here using video data from 1200 infants (400 with early brain injury, 400 preterm without early brain injury, 400 controls), plus those gathered from Aim 1 and Aim 3, we will extract pose data from single-camera video recordings and convert these into kinematic features and relevant scores needed to classify infant movement; 3)Aim3: To discover the features related to long-term motor development. Here we will convert data collected longitudinally from 50 infants (25 with early brain injury and 25 controls) using both instrumented gym and video recordings into estimates standard clinical tests change over time and track features over developmental timescales. These three aims spearhead the use of real world behavior for movement scoring. Our aims will bring us closer to a universal non-invasive test for early detection of neurodevelopmental disabilities and lay the groundwork for long-term prediction of disability. But above all, it promises to scale to infants worldwide, producing an affordable tool to aid in infant health assessment.
项目摘要/摘要 R 01项目的总体目标是开发一个自动化评估系统, 本领域的传感技术和机器学习算法能够准确和早期地检测婴儿 有神经发育障碍的风险在美国,每10个婴儿中就有1个出生时就有这些残疾的风险。 对于患有神经发育障碍的儿童,在生命的第一年进行早期治疗可以改善长期 结果。然而,我们目前受到现有临床测试不足的阻碍, 预测损伤。现有的测试很难管理,需要专门的培训,并具有有限的长期- 术语预测值。迫切需要为早期儿童开发一种客观、准确、易于使用的工具, 预测长期身体残疾。儿科和婴儿发育领域将大大受益 根据与目前用于检测运动的现有临床测量相关的定量分数 非常小的婴儿的损伤。为了实现易于管理的新一代测试,我们将 获得婴儿在仪器健身房玩耍或在健身房中移动时简单记录的大型数据集。 仰卧姿势。视频和传感器数据分析将根据我们的 问题域的知识。我们的方法将使用机器学习将这些特征向量与 目前推荐的临床试验或其他地面实况信息。这个设计的力量在于, 算法可以利用运动的许多方面来产生相关分数。我们的初步数据显示 我们奠定了以下目标:1)目标1:评估并发效度的多模态仪器 健身房与现有的临床工具。在这里,使用150名婴儿(75名早期脑损伤和75名对照),我们 将专注于将来自仪器健身房的数据转换为标准临床测试的估计值; 2)目标2: 开发一种基于计算机视觉的算法来量化婴儿的运动表现, 单摄像头视频这里使用的视频数据来自1200名婴儿(400名早期脑损伤,400名早产儿), 没有早期脑损伤,400名对照),加上从目标1和目标3收集的数据,我们将提取姿势数据 从单摄像机视频记录,并将其转换为运动学特征和相关分数, 目的3:发现与长期运动发育相关的特征。 在这里,我们将转换从50名婴儿(25名早期脑损伤和25名对照)纵向收集的数据。 使用仪器健身房和视频记录来估计标准临床测试随时间的变化, 跟踪发育时间尺度上的特征。这三个目标引领着使用真实的世界行为, 移动计分我们的目标将使我们更接近于一个通用的非侵入性测试,以早期发现 神经发育障碍,并为残疾的长期预测奠定基础。但最重要的是, 有望扩展到全世界的婴儿,产生一个负担得起的工具,以帮助婴儿健康评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHELLE J. JOHNSON其他文献

MICHELLE J. JOHNSON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHELLE J. JOHNSON', 18)}}的其他基金

CT imaging-based prediction and stratification of motor and cognitive behavior after stroke for targeted game-based robot therapy: Diversity Supplement
基于 CT 成像的中风后运动和认知行为的预测和分层,用于基于游戏的有针对性的机器人治疗:多样性补充
  • 批准号:
    10765218
  • 财政年份:
    2023
  • 资助金额:
    $ 63.89万
  • 项目类别:
Affordable Robot-Based Assessment of Cognitive and Motor Impairment in People Living with HIV and HIV-Stroke
经济实惠的基于机器人的艾滋病毒感染者和艾滋病毒中风患者认知和运动障碍评估
  • 批准号:
    10751316
  • 财政年份:
    2023
  • 资助金额:
    $ 63.89万
  • 项目类别:
Rehabilitation Using Community-Based Affordable Robotic Exercise Systems (Rehab CARES)
使用基于社区的经济实惠的机器人运动系统进行康复(Rehab CARES)
  • 批准号:
    10709654
  • 财政年份:
    2022
  • 资助金额:
    $ 63.89万
  • 项目类别:
Rehabilitation Using Community-Based Affordable Robotic Exercise Systems (Rehab CARES)
使用基于社区的经济实惠的机器人运动系统进行康复(Rehab CARES)
  • 批准号:
    10923752
  • 财政年份:
    2022
  • 资助金额:
    $ 63.89万
  • 项目类别:
Rehabilitation Using Community-Based Affordable Robotic Exercise Systems (Rehab CARES)
使用基于社区的经济实惠的机器人运动系统进行康复(Rehab CARES)
  • 批准号:
    10675319
  • 财政年份:
    2022
  • 资助金额:
    $ 63.89万
  • 项目类别:
Rehabilitation Using Community-Based Affordable Robotic Exercise Systems (Rehab CARES)
使用基于社区的经济实惠的机器人运动系统进行康复(Rehab CARES)
  • 批准号:
    10256401
  • 财政年份:
    2021
  • 资助金额:
    $ 63.89万
  • 项目类别:
Towards Objective Metrics to Quantify the Role of HIV and Increasing Cognitive Demand on Instrumental ADLs in People Aging with HIV
制定客观指标来量化艾滋病毒的作用以及艾滋病毒感染者对工具性 ADL 认知需求的增加
  • 批准号:
    10468937
  • 财政年份:
    2021
  • 资助金额:
    $ 63.89万
  • 项目类别:
Towards Objective Metrics to Quantify the Role of HIV and Increasing Cognitive Demand on Instrumental ADLs in People Aging with HIV
制定客观指标来量化艾滋病毒的作用以及艾滋病毒感染者对工具性 ADL 认知需求的增加
  • 批准号:
    10327136
  • 财政年份:
    2021
  • 资助金额:
    $ 63.89万
  • 项目类别:
Automated Assessment of Neurodevelopment in Infants at Risk for Motor Disability
自动评估有运动障碍风险的婴儿的神经发育
  • 批准号:
    9765496
  • 财政年份:
    2019
  • 资助金额:
    $ 63.89万
  • 项目类别:
SmarToyGym: Smart detection of atypical toy-oriented actions in at-risk infants
SmarToyGym:智能检测高危婴儿的非典型玩具导向行为
  • 批准号:
    9127310
  • 财政年份:
    2015
  • 资助金额:
    $ 63.89万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 63.89万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 63.89万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 63.89万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 63.89万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 63.89万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 63.89万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 63.89万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 63.89万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 63.89万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 63.89万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了