Network models of differentiation landscapes for angiogenesis and hematopoiesis
血管生成和造血分化景观的网络模型
基本信息
- 批准号:10622797
- 负责人:
- 金额:$ 37.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAge related macular degenerationAngiogenesis InhibitionArthritisBiologicalBiological ProcessBiomanufacturingBlindnessBlood VesselsBrainCAR T cell therapyCancer Vaccine Related DevelopmentCell Differentiation processCellsCellular biologyCommunicable DiseasesCommunitiesDataDevelopmentDiseaseEmbryonic DevelopmentEvolutionGenesGoalsHealth SciencesHematopoiesisHomeostasisImmune System DiseasesInflammatoryInvestigationIschemiaKnowledgeLymphocyteMalignant NeoplasmsMapsMathematicsMemoryModelingOrganPathway interactionsPatientsPatternPhenotypePlayProcessProductionPsoriasisResearchRetinaSchemeShapesSignal TransductionSoftware ToolsSystemTrainingangiogenesischimeric antigen receptor T cellsclinical investigationdeep learningdesignexperimental studygene networkin silicoinduced pluripotent stem cellinnovationmachine learning methodmathematical modelnetwork modelsnew therapeutic targetnovel therapeuticspre-clinicalsingle cell analysissingle-cell RNA sequencingskillstissue repairtranscriptomics
项目摘要
My long-term research goal is to develop data-driven mathematical models to understand and control
cell differentiation. My lab’s approach integrates single-cell transcriptomics data in a mathematical model, the
Hopfield model, to describe the signaling dynamics in gene networks and simulate the effect of perturbations on
sets of target genes. Originally developed as a mathematical model of the brain, the Hopfield model allows for a
direct mapping of associative memory patterns into dynamical attractor states in a network, so that the system
can recover a host of memories using partial information. Our rationale for representing phenotypic cell states
as associative memories is that when a cell “decides” to differentiate by expressing a new pattern of genes in a
network, the cell relies on a set of built-in associative memory patterns shaped by evolution. In contrast to many
deep learning and other machine learning methods, representing cellular decision processes using associative
memories provides interpretable information that can integrate pre-existing biological knowledge (e.g., pathway
information) to help elucidate fundamental biological rules. Moreover, the approach goes beyond a descriptive
analysis of single-cell data. It paves the way for in-silico experiments that could identify new drug targets and
generate new hypotheses for pre-clinical and clinical investigation.
In the next five years, we plan on applying our attractor models to help understand and control two inter-
playing biological processes involved in many diseases: angiogenesis and hematopoiesis. Angiogenesis is the
development of new blood vessels and is required for embryonic development, adult vascular homeostasis, and
tissue repair. Our goal in angiogenesis is to identify organ-specific signals, which will provide new opportunities
to design new therapeutics to stimulate or inhibit angiogenesis in diseased organs (e.g., retinas of patients
suffering from age-related macular degeneration) without affecting healthy organs. In hematopoiesis, we will use
our computational approaches to identify new schemes to generate lymphocytes from induced pluripotent stem
cells (iPSC). The bio-manufacturing of iPSC-derived lymphocytes is important for many applications, such as
effective production of T cells for CAR-T therapies and development of cancer vaccines.
The new targets and target combinations identified by our in-silico experiments could lead to novel
therapeutics for many diseases, including cancer, blindness, arthritis, psoriasis, and many other ischemic,
inflammatory, infectious, and immune disorders. Just as important, this MIRA project will allow us to continue
working with our network of collaborators, keep sharing innovative software tools with the broader biomedical
community, and further contribute to the training of an interdisciplinary health sciences workforce with strong
computational and mathematical skills.
我的长期研究目标是开发数据驱动的数学模型来理解和控制
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlo Piermarocchi其他文献
Carlo Piermarocchi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlo Piermarocchi', 18)}}的其他基金
Data-driven models of hematological cell fate decision and differentiation
血液细胞命运决定和分化的数据驱动模型
- 批准号:
9923020 - 财政年份:2016
- 资助金额:
$ 37.67万 - 项目类别:
Data-driven models of hematological cell fate decision and differentiation
血液细胞命运决定和分化的数据驱动模型
- 批准号:
9247481 - 财政年份:2016
- 资助金额:
$ 37.67万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 37.67万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 37.67万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 37.67万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 37.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 37.67万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 37.67万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 37.67万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 37.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists