Probabilistic deep learning models and integrated biological experiments for analyzing dynamic and heterogeneous microbiomes

用于分析动态和异质微生物组的概率深度学习模型和集成生物实验

基本信息

  • 批准号:
    10622713
  • 负责人:
  • 金额:
    $ 44.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Our microbiomes, or the collections of trillions of micro-organisms that live on and within us, are highly dynamic and have been implicated in a variety of human diseases. Sophisticated computational approaches are critical for analyzing increasing quantities and types of microbiome data, including time-series, assays for non-bacterial components of the microbiome, and multiple measurement modalities such as metabolite and gene expression levels. Another exciting recent trend in the field has been translational applications, particularly live bacterial therapies for treating human diseases. In parallel, the field of machine learning has been advancing with deep learning technologies that have dramatically improved applications such as speech and image recognition. My lab develops novel machine learning methods and experimental approaches for understanding the microbiome, with a particular focus on microbial dynamics and bacteriotherapies. In the past five years, we have developed new computational methods and released open-source software tools for assessing the consistency of changes in the microbiome induced by therapeutics, forecasting population dynamics of microbiomes, and predicting the status (e.g., presence of disease) of the human host from changes in the microbiome over time. I have also led experimental efforts to delineate the role of bacteriophages in microbiome dynamics and to develop gut metabolite-based biomarker assays to predict recurrence of C. difficile infection. Additionally, with collaborators, we have developed candidate bacteriotherapies for C. difficile infection and food allergies. My overall vision for my lab in the next five years is to leverage deep learning technologies to advance the microbiome field beyond finding associations in data, to accurately predicting the effects of perturbations on microbiota, elucidating mechanisms through which the microbiota affects the host, and improving bacteriotherapies to enable their success in the clinic. I plan to accomplish this by developing new deep learning models that address specific challenges for the microbiome, including noisy/small datasets, highly heterogenous human microbiomes, the need for direct interpretability of model outputs, complex multi-modal datasets, and constraints imposed by biological principles. My plan is to directly couple computational models and biological experiments through reinforcing cycles of predicting, testing predictions with new experiments, and improving models. Approaches I will pursue include incorporating into deep learning models probability, embeddings of microbes and other entities using rich information (such as gene content or chemical structure), decomposition of multi-modal data into interpretable and interacting groups, and automated design of new biological experiments in gnotobiotic mice that seek to maximize information for computational models and ultimately improve engraftment and efficacy of candidate bacteriotherapies. An important objective will also be to make computational tools that my lab develops widely available to the research community, through release of quality open-source software.
我们的微生物群,或者说生活在我们身上和体内的数万亿微生物的集合,是高度动态的 与多种人类疾病有牵连。复杂的计算方法至关重要 用于分析数量和类型不断增加的微生物组数据,包括时间序列、非细菌的分析 微生物组的组成,以及代谢物和基因表达等多种测量方式 级别。该领域另一个令人兴奋的最新趋势是翻译应用,特别是活细菌 治疗人类疾病的疗法。同时,机器学习领域也在不断深入 极大地改进了语音和图像识别等应用的学习技术。我的 实验室为理解微生物组开发了新的机器学习方法和实验方法, 特别关注微生物动力学和细菌疗法。在过去的五年里,我们发展了 用于评估变更一致性的新计算方法和发布的开源软件工具 在治疗药物诱导的微生物组中,预测微生物组的种群动态,并预测 人类宿主的状态(例如,疾病的存在)不受微生物群随时间的变化的影响。我还领导了 描述噬菌体在微生物群动态和肠道发育中的作用的实验努力 以代谢产物为基础的生物标志物分析预测艰难梭菌感染的复发。此外,对于合作者, 我们已经开发出治疗艰难梭菌感染和食物过敏的候选细菌疗法。我的总体愿景是 我在未来五年的实验室是利用深度学习技术来推动微生物组领域超越 在数据中寻找关联,以准确预测扰动对微生物区系的影响,阐明 微生物区系影响宿主的机制,以及改进细菌疗法以使其能够 在临床上取得了成功。我计划通过开发新的深度学习模型来实现这一点,这些模型解决了特定的 微生物组面临的挑战,包括噪音/小数据集,高度异质的人类微生物组, 需要直接解释模型输出、复杂的多模式数据集和施加的约束 生物学原理。我的计划是通过直接将计算模型和生物实验相结合 加强预测的循环,用新的实验测试预测,并改进模型。方法I 将在深度学习模型中纳入概率、嵌入微生物和其他 实体利用丰富的信息(如基因含量或化学结构),分解多模式数据 进入可解释和交互的小组,并自动设计新的诺生生物实验 寻求最大化计算模型的信息并最终改进嫁接和 候选细菌疗法的疗效。一个重要的目标也将是使我的计算工具 通过发布高质量的开源软件,Lab开发了广泛适用于研究社区的软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Georg Kurt Gerber其他文献

Georg Kurt Gerber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Georg Kurt Gerber', 18)}}的其他基金

Bayesian Machine Learning Tools for Analyzing Microbiome Dynamics
用于分析微生物组动力学的贝叶斯机器学习工具
  • 批准号:
    10245080
  • 财政年份:
    2018
  • 资助金额:
    $ 44.75万
  • 项目类别:
Bayesian Machine Learning Tools for Analyzing Microbiome Dynamics
用于分析微生物组动力学的贝叶斯机器学习工具
  • 批准号:
    10015315
  • 财政年份:
    2018
  • 资助金额:
    $ 44.75万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.75万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了