The interplay between nutrient availability and secondary bile acid metabolism in commensal Clostridia mediates colonization resistance against C. difficile
共生梭状芽胞杆菌中营养可用性和次级胆汁酸代谢之间的相互作用介导对艰难梭菌的定植抵抗
基本信息
- 批准号:10622031
- 负责人:
- 金额:$ 38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-24 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAmino AcidsAnimal ModelAntibioticsAreaBacterial PhysiologyBasic ScienceBile AcidsBiochemistryBiological ProcessBiomassClostridium difficileComplexDataDevelopmentDietDiseaseEnvironmentFoundationsGerm-FreeGoalsGram-Positive BacteriaGrowthHealthHumanImmune responseIn VitroIndigenousIndividualInfectionIntelligenceIntestinesKnowledgeLaboratoriesMediatingMetabolismMethodsMicrobeMissionNational Institute of General Medical SciencesNutrientNutrient availabilityPreventionProductionProtein EngineeringProteinsProteomicsPublic HealthReproducibilityReproduction sporesResearchRoleShapesStructureTechniquesTechnologyTherapeuticTherapeutic InterventionUnited States National Institutes of Healthbacterial geneticsbile acid metabolismcolonization resistancecombinatorialdesigndisease diagnosisgut microbiomegut microbiotahost-microbe interactionsimprovedin vivometabolomemetabolomicsmicrobialmicrobial communitymicrobiomemicrobiome researchmodel organismmouse modelnovelpathogenpreventtherapeutic developmenttranscriptomics
项目摘要
Project Summary/Abstract
In the Theriot laboratory we apply cutting-edge technology and high-throughput methods to analyze the gut
microbiome and metabolome using a range of experimental techniques and animal models.
We leverage many
approaches that span diverse fields including bacterial genetics, bacterial physiology, protein engineering,
biochemistry, and apply a variety of omic approaches (microbiomics, transcriptomics, proteomics, and
metabolomics) in vitro and in vivo to define the mechanisms behind how the gut microbiota provides
colonization resistance against C. difficile.
One of the many essential functions of the indigenous gut microbiota is its ability to maintain colonization
resistance and to prevent establishment and growth of pathogens in the gut. There has been a great deal of
research in this area trying to define the mechanisms by which the gut microbiota mediates colonization
resistance. Potential mechanisms include competition for nutrients, taking up physical space or biomass,
production of inhibitory products, and shaping the host immune response. A popular model organism used to
interrogate these mechanisms is Clostridioides difficile due to its exquisite sensitivity to changes in the gut
microbiota structure and function. C. difficile is an anaerobic, spore-forming, Gram-positive bacterium first
isolated in 1935 and the causative agent for C. difficile infection (CDI). Unlocking how C. difficile is able to
benefit from the loss of colonization resistance in the gut has major implications for development of
therapeutics for prevention and treatment of CDI.
My long-term goal is to understand how the gut microbiota mediates colonization resistance against C. difficile.
The overall objective of this application is to determine the relationship between nutrient availability (amino
acids) and bile acid metabolism in the context of colonization resistance against C. difficile. Based on
preliminary data our hypothesis is that amino acid availability influences secondary bile acid production by
commensal Clostridia, which will alter colonization resistance against C. difficile. In order to investigate this
hypothesis, we plan to alter amino acid abundances in defined and rich media in vitro, and use defined diets in
vivo to understand how this impacts secondary bile acid production of commensal Clostridia. Leveraging our
robust and reproducible germfree and antibiotic treated mouse models of CDI, we will determine how these
metabolic processes affect the establishment and growth of C. difficile, as well as the surrounding gut microbial
community. Using novel platforms like LC-IMS-MS and Protein-SIP, we will define the gut metabolome and
metaproteome in the context of colonization resistance.
The contribution of the proposed research is significant as it seeks to move away from untargeted therapies
like FMT and move toward a targeted approach, whereby we can use diet (amino acids) to control secondary
bile acid production by commensal Clostridia, restoring colonization resistance against C. difficile. The findings
in this proposal will advance understanding of microbe-microbe interactions, host-microbe interactions, and
improve microbiome-based therapeutics. Beyond C. difficile it has the potential to allow us to intelligently
design customized therapeutic interventions to target human health conditions in the complex ecological
environment of the human intestine.
项目总结/摘要
在Theriot实验室,我们应用尖端技术和高通量方法来分析肠道
微生物组和代谢组使用一系列实验技术和动物模型。
我们利用许多
方法跨越不同的领域,包括细菌遗传学,细菌生理学,蛋白质工程,
生物化学,并应用各种组学方法(微生物组学,转录组学,蛋白质组学,
代谢组学),以确定肠道微生物群如何提供
对C.很难
固有肠道微生物群的许多基本功能之一是其维持定植的能力
抵抗力,并防止肠道中病原体的建立和生长。有很多
该领域的研究试图确定肠道微生物群介导定植的机制
阻力潜在的机制包括竞争养分,占用物理空间或生物量,
产生抑制性产物,并形成宿主免疫应答。一种流行的模式生物,
由于其对肠道变化的敏感性,
微生物群的结构和功能。C.艰难梭菌首先是一种厌氧的、形成孢子的革兰氏阳性细菌
1935年分离到的C.艰难梭菌感染(CDI)。解锁如何C。difficile能够
肠道中定植抵抗力丧失的益处对肠道疾病的发展具有重要意义。
用于预防和治疗CDI的治疗剂。
我的长期目标是了解肠道微生物群如何介导对C的定植抗性。很难
本申请的总体目标是确定养分有效性(氨基)
酸)和胆汁酸代谢的背景下,殖民抵抗C。很难基于
初步数据我们的假设是,氨基酸的可用性影响二级胆汁酸的生产,
嗜盐梭菌,这将改变对C。很难为了调查这件事
假设,我们计划在体外改变限定和丰富培养基中的氨基酸丰度,并使用限定的饮食,
体内,以了解这如何影响肠道梭菌的次级胆汁酸产生。利用我们
稳健和可重复的无菌和抗生素治疗的CDI小鼠模型,我们将确定这些
代谢过程影响C.艰难梭菌,以及周围的肠道微生物
社区使用LC-IMS-MS和Protein-SIP等新平台,我们将定义肠道代谢组,
在殖民抵抗的背景下的元蛋白质组。
拟议研究的贡献是重要的,因为它试图摆脱非靶向治疗
喜欢FMT,并朝着有针对性的方法迈进,据此,我们可以使用饮食(氨基酸)来控制继发性
胆汁酸的生产,恢复对C.很难这些发现
在这项提案中,将促进对微生物-微生物相互作用、宿主-微生物相互作用和
改进基于微生物组的疗法。超越C。它有可能让我们聪明地
设计定制的治疗干预措施,以针对复杂生态环境中的人类健康状况,
人体肠道的环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Casey Michelle Theriot其他文献
Casey Michelle Theriot的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Casey Michelle Theriot', 18)}}的其他基金
Targeted bacterial restoration of colonization resistance against C. difficile
靶向细菌恢复对艰难梭菌的定植抗性
- 批准号:
9137060 - 财政年份:2016
- 资助金额:
$ 38万 - 项目类别:
Targeted bacterial restoration of colonization resistance against C. difficile
靶向细菌恢复对艰难梭菌的定植抗性
- 批准号:
9340238 - 财政年份:2016
- 资助金额:
$ 38万 - 项目类别:
Shifts in the Gastrointestinal Metabolome During Clostridium difficile Infection
艰难梭菌感染期间胃肠道代谢组的变化
- 批准号:
8908026 - 财政年份:2013
- 资助金额:
$ 38万 - 项目类别:
Shifts in the Gastrointestinal Metabolome During Clostridium difficile Infection
艰难梭菌感染期间胃肠道代谢组的变化
- 批准号:
8744297 - 财政年份:2013
- 资助金额:
$ 38万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 38万 - 项目类别: