Dynamic architecture and function of microtubule networks
微管网络的动态结构和功能
基本信息
- 批准号:10623051
- 负责人:
- 金额:$ 43.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAddressAffectAffinityArchitectureAutomobile DrivingBehaviorBiochemistryBiologicalBiopolymersCell CycleCell Cycle StageCell physiologyCellsCellular StructuresCellular biologyCollaborationsComplexComputer ModelsCytoskeletonEventFundingFunding MechanismsGeometryGoalsGolgi ApparatusIndividualInterphaseIntracellular SpaceIntracellular TransportLaboratoriesLaboratory StudyMAPT geneMetabolicMethodsMicrotubule-Associated ProteinsMicrotubule-Organizing CenterMicrotubulesMolecularMolecular MotorsNational Institute of General Medical SciencesPhysiologicalPositioning AttributeProcessPublishingRegulationResearchResourcesRoleScaffolding ProteinSignal TransductionSiteStructureSystemTimeTranslatingTumor Suppressor Proteinscrosslinkhuman diseaseinsightnovelprogramsresponsetrafficking
项目摘要
Summary
Microtubules (MTs) are dynamic biopolymers, which serve as major highways for intracellular transport. MT
networks are critical for cell physiology, and their disturbance underlies many human diseases. My laboratory
studies global mechanisms allowing MTs to perfectly attribute to specific cellular functions.
MT-dependent transport arranges multiple cell components at the same time. To address these complex
requirements, MT geometry, molecular motor affinity, and/or MT association with to other cell components are
tightly regulated. MT network geometry changes depending on the sites of new MT outgrowth (the MT-organizing
centers, or MTOCs), local stabilization/disassembly of MTs, and MT anchoring to other structures. Furthermore,
the affinity of individual MTs to molecular motors can be modulated to affect intracellular transport. Finally, MTs
can scaffold proteins or be cross-linked with other cytoskeletal components. All those mechanisms that tailor MT
organization to distinct cell functions can respond dynamically to cell-signaling inputs and the physiological
context. Together, molecular regulation and functional specialization of MT networks comprise a global field in
basic cell biology with numerous unanswered questions. My research program’s long-term goals include
defining: how interphase MT networks are built and regulated; specific mechanisms tailoring MT
biochemistry and geometry to specific cellular needs; the methods whereby MTs collaborate with other
cellular systems to build intracellular space; and, how MTs switch their functional loads between distinct
tasks to arrange integral cell architecture under changing signaling conditions.
Since April 2018, the NIGMS MIRA funding mechanism has been an invaluable resource allowing us to explore
these basic, fundamental biological problems. We have published several central advances toward our global
and interactive goals. Among other findings, we brought a new mechanistic understanding of Golgi-derived MT
networks (GDMTs, which were identified in our prior studies); described novel, surprising functions for MT-
associated proteins (MAPs) tau, CLASP2, and CAMSAP2; utilized collaborations with experts in computational
modeling for deep understanding of MT functions in secretory trafficking and actin cytoskeleton dynamics; and,
discovered a previously overlooked, physiologically important Golgi complex behavior in the cell cycle.
In the next five years, I will extend mechanistic and functional insights in two broad directions of my program’s
extant NIGMS-funded research. (I) We will determine how the versatility of MT functions is tuned by
multifunctional MAPs, focusing on (a) secretory trafficking through the Golgi axis and (b) the organization of the
actin cytoskeleton. Initial studies will evaluate the roles of MT regulators CLASPs and a MT-stabilizing tumor
suppressor RASSF1A. (II) We will expand our studies of MT-dependent Golgi positioning to dissect (a) molecular
mechanisms driving this process and (b) the significance of Golgi relocation in distinct cell cycle stages.
总结
微管(MT)是动态的生物聚合物,作为细胞内运输的主要通道。Mt
网络对于细胞生理学至关重要,它们的干扰是许多人类疾病的基础。我的实验室
研究使MT完美地归属于特定细胞功能的全局机制。
MT依赖性运输同时排列多个细胞组分。为了解决这些复杂的
在一些实施方案中,MT的结构、要求、MT几何结构、分子马达亲和力和/或MT与其它细胞组分的缔合是
严格监管。MT网络几何形状的变化取决于新的MT产物(MT组织)的位置。
中心或MTOCs)、MT的局部稳定/拆卸以及MT锚定到其他结构。此外,委员会认为,
可以调节单个MT对分子马达的亲和力以影响细胞内转运。最后,MT
可以为蛋白质提供支架或与其他细胞骨架成分交联。所有这些机制,
不同细胞功能的组织可以动态地响应细胞信号输入和生理信号。
上下文MT网络的分子调节和功能专业化共同构成了一个全球领域,
基础细胞生物学还有很多未解之谜我的研究计划的长期目标包括
定义:间期MT网络是如何建立和调节的;定制MT的具体机制
生物化学和几何形状的特定细胞的需要; MT与其他合作的方法
细胞系统建立细胞内空间;以及,MT如何在不同的细胞之间切换其功能负荷。
任务来在变化的信令条件下安排完整的小区架构。
自2018年4月以来,NIGMS MIRA资助机制一直是一个宝贵的资源,使我们能够探索
这些基本的生物学问题。我们已经发表了几项核心进展,
互动的目标。在其他发现中,我们对高尔基体衍生的MT有了新的机制理解,
网络(GDMT,这是在我们以前的研究中确定);描述了新的,令人惊讶的功能MT-
相关蛋白(MAPs)tau、CLASP 2和CAMSAP 2;利用与计算领域专家的合作,
为深入理解MT在分泌运输和肌动蛋白细胞骨架动力学中的功能而建模;以及,
发现了一个以前被忽视的,在生理上重要的高尔基复合体在细胞周期中的行为。
在接下来的五年里,我将在我的计划的两个广泛的方向扩展机械和功能的见解,
NIGMS资助的研究。(I)我们将通过以下方式确定如何调整MT函数的多功能性:
多功能的地图,重点是(a)分泌贩运通过高尔基体轴和(B)的组织,
肌动蛋白细胞骨架初步研究将评估MT调节剂CLASP和MT稳定肿瘤的作用,
抑制基因RASSF 1A。(II)我们将扩大我们的研究MT依赖的高尔基体定位解剖(a)分子
驱动该过程的机制和(B)高尔基体重新定位在不同细胞周期阶段中的意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irina Kaverina其他文献
Irina Kaverina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irina Kaverina', 18)}}的其他基金
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 43.59万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 43.59万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 43.59万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 43.59万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 43.59万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 43.59万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 43.59万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 43.59万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 43.59万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 43.59万 - 项目类别:
Research Grant