Uncovering single-cell transcriptional dynamics in somitogenesis in live zebrafish embryos

揭示活体斑马鱼胚胎体节发生中的单细胞转录动力学

基本信息

项目摘要

Project Summary/Abstract In vertebrate development, somites—morphological segments that prefigure the bones and muscles of the adult—are formed rhythmically and sequentially at the posterior end of the elongating body axis of the embryo. This rhythmic specification is dictated by a highly conserved biological clock that consists of an oscillatory gene regulatory network. In humans, failure of this network to robustly oscillate in individual cells or to synchronize tissue-wide oscillations across neighboring cells has been associated with developmental defects such as scoliosis. Despite years of research identifying the molecular components of this oscillatory network, we still do not understand the mechanisms affected by important disease-causing mutations in these components. Crucially, to date, the vast majority of information about this highly dynamic developmental process stems from inferences from fixed tissue or from fluorescent reporters whose maturation time is too slow to reveal the mechanistic basis of these mutations at the level of their transcriptional dynamics. To overcome this major obstacle, we established the MS2 system to measure the dynamics of transcriptional initiation of genes within this network in individual cells of living, developing zebrafish embryos, a widespread model of somitogenesis and scoliosis. This new ability empowers us to revisit the molecular processes underlying vertebrate segmentation from the standpoint of the dynamics of individual cells. Using this technology, we have discovered that the smooth protein oscillations that characterize somitogenesis are produced by bursts of transcriptional initiation. Here, we propose to characterize zebrafish somitogenesis in healthy conditions and to uncover (i) the molecular origins of transcriptional bursting in somitogenesis and (ii) how these bursts are coordinated between neighboring cells through signaling pathways in order to produce the coherent tissue-wide oscillations necessary for healthy development. We envision that our work will set the stage for precisely diagnosing the molecular underpinnings of disease phenotypes in vertebrate development. Further, the experimental and computational technologies developed here will empower the biology community to launch explorations into the single-cell nature of vertebrate development dynamics on par with what is currently attainable in invertebrate animals. Ultimately, this knowledge—combined with the innovated technologies and analyses proposed here—will make it possible to rationally modify these transcriptional dynamics at will for bioengineering or therapeutic purposes.
项目总结/摘要 在脊椎动物的发育过程中,体节- 成体-在胚胎的伸长体轴的后端有节奏地和顺序地形成。 这种节奏的规范是由一个高度保守的生物钟,包括一个振荡基因 监管网络。在人类中,这种网络在单个细胞中无法稳健振荡或同步 跨越相邻细胞的组织范围的振荡与发育缺陷有关, 脊柱侧凸 尽管多年的研究确定了这种振荡网络的分子组成部分,我们仍然没有 了解这些成分中重要致病突变的影响机制。最关键的是, 到目前为止,关于这种高度动态的发展过程的绝大多数信息都来自于 来自固定组织或来自成熟时间太慢而不能揭示细胞的荧光报告子的推断。 这些突变在转录动力学水平上的机制基础。 为了克服这一主要障碍,我们建立了MS 2系统来测量转录动力学, 在活的、发育中的斑马鱼胚胎的单个细胞中,这个网络中的基因启动, 躯体发育和脊柱侧凸的模型。这种新的能力使我们能够重新审视分子过程 从单个细胞的动力学的角度来看,潜在的脊椎动物分割。使用此 技术,我们已经发现,平滑的蛋白质振荡的特点,体节发生是 由转录起始的爆发产生。在这里,我们建议以斑马鱼的体节发生为特征, 健康的条件下,并揭示(i)在体细胞发生转录爆发的分子起源和(ii) 这些突发如何通过信号通路在相邻细胞之间协调, 健康发育所必需的连贯的组织范围的振荡。我们设想,我们的工作将为 在脊椎动物发育中精确诊断疾病表型的分子基础的阶段。 此外,这里开发的实验和计算技术将使生物界能够 对脊椎动物发育动力学的单细胞性质进行探索, 目前在无脊椎动物中可获得的。最终,这种知识-结合创新 技术和分析提出这里-将有可能合理地修改这些转录 生物工程或治疗目的的任意动力学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hernan Gustavo Garcia其他文献

Hernan Gustavo Garcia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hernan Gustavo Garcia', 18)}}的其他基金

Predictive understanding of the temporal control of transcription in Drosophila development
对果蝇发育中转录时间控制的预测性理解
  • 批准号:
    10096817
  • 财政年份:
    2021
  • 资助金额:
    $ 44.14万
  • 项目类别:
Predictive understanding of the temporal control of transcription in Drosophila development
对果蝇发育中转录时间控制的预测性理解
  • 批准号:
    10608142
  • 财政年份:
    2021
  • 资助金额:
    $ 44.14万
  • 项目类别:
Predictive understanding of the temporal control of transcription in Drosophila development
对果蝇发育中转录时间控制的预测性理解
  • 批准号:
    10459230
  • 财政年份:
    2021
  • 资助金额:
    $ 44.14万
  • 项目类别:
Lighting Up the Central Dogma in Embryonic Development
阐明胚胎发育的中心法则
  • 批准号:
    9350588
  • 财政年份:
    2017
  • 资助金额:
    $ 44.14万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 44.14万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了