Intravital imaging of transplant evoked glia repair in stroke
移植诱发中风神经胶质修复的活体成像
基本信息
- 批准号:10741583
- 负责人:
- 金额:$ 24.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAddressAdultAstrocytesAxonBehavioralBlood VesselsBlood flowCell CountCell TransplantationCellsCentral Nervous SystemCertificationCicatrixClinicalCognitive deficitsCompetenceContrast MediaCuesEffectivenessEnvironmentExtravasationFibrosisFosteringFutureGoalsGrowthHealthcareHourImmuneImmunohistochemistryInfarctionInfiltrationInjuryIntravenousIschemiaIschemic StrokeKnowledgeLesionMammalsMapsMethodsModelingMolecularMorphologyMultimodal ImagingMusNatural regenerationNatureNerve RegenerationNeurogliaNeuronsNeurophysiology - biologic functionOptical Coherence TomographyOrganismOutcomePerfusionPeripheralPermeabilityPhasePhenotypePopulationPositioning AttributeProcessProliferatingRecoveryRecovery of FunctionReporterSalineSerum ProteinsSourceStrokeSystemTimeTissuesTranslationsTransplantationWorkZebrafishangiogenesiscare burdencentral nervous system injurycohortdensityimaging modalityimprovedin vivoinsightintravital imagingmultimodalityneonatenerve stem cellneural circuitneural repairneurovascularnovelpermissivenesspost strokerepair functionrepairedrestorationstroke therapytwo photon microscopywound healingwound response
项目摘要
Ischemic stroke is a major healthcare burden and there is an important unmet need for new treatments that
can be applied beyond the narrow acute phase of injury after which ischemic tissue becomes infarcted. A
hallmark of natural wound responses after stroke is the formation of compartmentalized lesions that contain
non-neural cell cores that lack specialized glia cells that are fundamental to supporting neural circuits and
barrier functions. In organisms capable of neural regeneration such as zebrafish and the mammalian neonate,
immature glia cells readily repopulate lesion cores to effectively drive neural repair, but this competency is lost
in adult mammals. With the overall goal of promoting scar-free glia repair in stroke to transform lesion cores
into neural regeneration permissive environments, this project’s main objective is to use cutting-edge intravital
imaging methods to longitudinally track cell graft evoked changes in wound repair outcomes following cortical
strokes to identify critical graft parameters that lead to effective glia-repair. Our hypothesis is that multiple
intravital imaging modalities can be used to effectively track temporal changes in grafted cell number and
phenotype as well as quantify graft induced alterations to microvasculature density, perfusion, and permeability
in lesion cores. Grafting cells during the sub-acute injury phase to alter the nature of adult central nervous
system (CNS) wound healing and drive glia repair represents a novel and potentially transformative strategy
that would have broad impact for treatment of stroke and other CNS injuries. In the first aim, we will
longitudinally track differences in glia repair in cortical strokes directed by neural progenitor cells (NPC) and
immature astroglia grafts. Priming grafts into proliferating immature astrocytes prior to transplantation may
accelerate and better guide glia repair processes. Using two-photon microscopy (2PM) we will evaluate graft
cell number, density, and morphology and optical coherence tomography (OCT) to quantify graft induced
changes in vascular density and quantitative blood flow in and around stroke lesion cores. To evaluate return
of CNS barrier functions we will quantify the leakage of intravenous contrast agents using 2PM. In the second
aim, we evaluate the effect of post stroke grafting timepoint on glia repair outcomes. This project will provide
mechanistically validated, proof-of-principle evidence into how cell grafts, including immature astrocyte grafts,
can remodel lesion cores by directing angiogenesis and restoration of glia barriers. This project will advance
our understanding of cell transplantation and certify a toolkit for evaluating transplant functions in vivo that will
position us to pursue advanced stroke functional recovery studies in future work.
缺血性卒中是一个主要的医疗负担,对新的治疗方法存在重要的未满足的需求,
可以应用于缺血组织梗塞之后的狭窄的急性损伤期。一
中风后自然伤口反应的标志是形成区室化损伤,
非神经细胞核心,缺乏支持神经回路的专门神经胶质细胞,
屏障功能。在具有神经再生能力的生物体中,如斑马鱼和新生哺乳动物,
不成熟的神经胶质细胞容易重新填充损伤核心,以有效地驱动神经修复,但这种能力丧失
在成年哺乳动物中。总体目标是促进中风中无瘢痕胶质修复,
进入神经再生许可的环境,这个项目的主要目标是使用尖端的活体
纵向追踪皮质骨移植后伤口修复结果中细胞移植物诱发变化的成像方法
中风,以确定关键的移植参数,导致有效的神经胶质修复。我们的假设是
活体成像模式可用于有效地追踪移植细胞数量的时间变化
表型以及量化移植物诱导的微血管密度、灌注和渗透性的改变
在病变核心。亚急性损伤期移植细胞改变成人中枢神经系统的性质
中枢神经系统(CNS)创伤愈合和驱动神经胶质修复代表了一种新的和潜在的变革性策略
这将对中风和其他中枢神经系统损伤的治疗产生广泛的影响。在第一个目标中,我们将
纵向跟踪神经祖细胞(NPC)指导的皮质卒中中神经胶质修复的差异,
未成熟的星形胶质细胞移植物在移植前将移植物预处理成增殖的未成熟星形胶质细胞可能
加速并更好地引导胶质细胞修复过程。使用双光子显微镜(2PM),我们将评估移植物
细胞数量、密度和形态以及光学相干断层扫描(OCT),以量化移植物诱导的
卒中病灶核心内和周围血管密度和定量血流的变化。评估回报
的CNS屏障功能,我们将使用2PM量化静脉造影剂的泄漏。在第二
目的:我们评估卒中后移植时间点对胶质修复结果的影响。本项目将提供
机械验证,原理证明的证据,细胞移植,包括不成熟的星形胶质细胞移植,
可以通过引导血管生成和恢复神经胶质屏障来重塑病变核心。该项目将推进
我们对细胞移植的理解,并认证了一个用于评估体内移植功能的工具包,
使我们能够在未来的工作中继续进行先进的中风功能恢复研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy Mark O'Shea其他文献
Timothy Mark O'Shea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 24.75万 - 项目类别:
Operating Grants