Developmental Mechanisms of Fine-scale Cortico-cortical Circuit Formation
精细皮质-皮质回路形成的发育机制
基本信息
- 批准号:10744933
- 负责人:
- 金额:$ 44.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdhesionsAnatomyAnterolateralAreaAxonBirthBrainCell Adhesion MoleculesCellsDataDate of birthDefectDevelopmentDevelopmental ProcessDiseaseDyslexiaFamilyFeedbackFoundationsGene ExpressionGeneticGoalsHumanIn Situ HybridizationIndividualKnowledgeLabelLinkMedialMediatingMental disordersMessenger RNAMethodsMissionModelingMolecularMotorMusNeurodevelopmental DisorderNeuronsNeurosciencesOutcomeOutputPatternPhenotypeProcessProductionProjections and PredictionsPropertyRegulationResearchRoleSchizophreniaSensorySolidSourceSpecific qualifier valueSpecificitySynapsesTestingTherapeutic InterventionThymidineUnited States National Institutes of HealthV1 neuronVision DisordersVisualVisual CortexVisual SystemWorkanalogarea striataautism spectrum disordercell typeextrastriate visual cortexgenetic manipulationinnovationinsightneuralneural circuitneuromechanismneuronal circuitryneuronal patterningnew therapeutic targetnovel therapeuticspresynaptic neuronspreventprogramspublic health relevancerabies viral tracingsingle moleculesynaptic pruningvirus genetics
项目摘要
Project Summary
Cortico-cortical projection neurons (CCPNs) connect cortical areas with each other to facilitate
sensory processing and execute appropriate motor actions. Defects in intra-cortical connectivity
are associated with a variety of neural circuit disorders such as dyslexia, autism, and
schizophrenia. Because these diseases have genetic components and potentially arise from
altered brain development, it is important to understand how CCPNs know which area to target
and which synaptic inputs to receive. The long-term goal of my research program is to gain
mechanistic insights into cortical circuit assembly at the single cell level in an effort to
understand underpinnings of neurodevelopmental disorders and develop new therapies. In
doing so, we will be able to identify molecular and genetic mechanisms that link gene
expression and neural activity to neuronal connectivity. The objective of this proposal is to
identify mechanisms by which long-range cortico-cortical neuronal connectivity is established in
the mammalian cortex using the mouse visual system as a model. Our central hypothesis is that
V1 neurons, projecting to the AL (anterolateral: V1→AL) or the PM (posteromedial: V1→PM)
higher visual areas, differ in timing and molecular regulation of their axonal projection
development, and their input versus output connectivity is specified by two distinct rules: early
specification and synaptic pruning mechanism, respectively. We will test this hypothesis with the
following aims: 1) we will determine the patterns and timing of cortico-cortical neuronal
projection development in the mouse visual cortex. 2) we will determine the roles of Teneurins,
cell-adhesion molecules, in specifying the projection identities of V1→AL and V1→PM neurons.
3) we will determine developmental principles of ‘like-to-like’ cortico-cortical feedback circuit
formation. This research is significant because elucidating the developmental mechanisms of
neural circuit assembly will provide cell-type or circuit-specific therapeutic interventions for
specific aspects of neurodevelopmental and psychiatric disorder phenotypes. The proposed
research is innovative because we are using and developing the technical solutions to allow us
to target gene expression and capture the rapid developmental connectivity dynamics of layer-
and projection-specific cortical neurons. Results will provide a comprehensive understanding of
how a long-range connectivity network arises at the cellular level. This new knowledge will have
a positive impact on the neuroscience field as it will establish a solid foundation to provide
connectivity-based therapeutic interventions for neurodevelopmental disorders.
项目摘要
皮质-皮质投射神经元(CCPN)将皮质区域彼此连接,以促进
感觉处理和执行适当的运动动作。皮质内连接缺陷
与多种神经回路障碍有关,如阅读障碍、自闭症和
精神分裂症因为这些疾病有遗传成分,可能是由
改变大脑发育,重要的是要了解CCPNs如何知道哪个区域的目标
以及接收哪些突触输入。我研究项目的长期目标是
在单细胞水平上对皮层电路组装的机械见解,
了解神经发育障碍的基础并开发新的治疗方法。在
这样做,我们将能够确定基因之间的分子和遗传机制,
表达和神经活动与神经元连接。这项建议的目的是
确定在大脑皮层中建立长距离皮质-皮质神经元连接的机制,
哺乳动物的大脑皮层使用小鼠的视觉系统作为模型。我们的核心假设是,
V1神经元,投射到AL(前外侧:V1→AL)或PM(后内侧:V1→PM)
更高的视觉区域,在轴突投射的时间和分子调节方面不同
开发,它们的输入与输出连接由两个不同的规则指定:
规范和突触修剪机制。我们将测试这个假设与
以下目标:1)我们将确定皮质-皮质神经元的模式和时间
小鼠视觉皮层的投射发育。2)我们将决定特内鲁因的角色
细胞粘附分子,在指定的V1→AL和V1→PM神经元的投射身份。
3)我们将确定“相似”皮质-皮质反馈回路的发展原则
阵本研究具有重要意义,因为阐明了
神经回路组件将提供细胞类型或回路特异性治疗干预,
神经发育和精神障碍表型的特定方面。拟议
研究是创新的,因为我们正在使用和开发技术解决方案,
以基因表达为目标,捕捉层-
和投射特异性皮层神经元。结果将提供全面的了解
远程连接网络如何在蜂窝级别出现。这些新知识将
对神经科学领域的积极影响,因为它将建立一个坚实的基础,
基于连接性的神经发育障碍治疗干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Euiseok J Kim其他文献
Visually guided behavior in freely moving mice
- DOI:
10.1186/1471-2202-14-s1-p141 - 发表时间:
2013-07-08 - 期刊:
- 影响因子:2.300
- 作者:
Balaji Sriram;Alberto Cruz-Martin;Laura DeNardo;Mohit Patel;Euiseok J Kim;Anirvan Ghosh - 通讯作者:
Anirvan Ghosh
Euiseok J Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Euiseok J Kim', 18)}}的其他基金
Developing Novel Trans-Synaptic Viral Vectors for Orthogonal or Rapid Circuit Tracing
开发用于正交或快速电路追踪的新型跨突触病毒载体
- 批准号:
10640622 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 44.06万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 44.06万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 44.06万 - 项目类别:
Research Grant