Developing Novel Trans-Synaptic Viral Vectors for Orthogonal or Rapid Circuit Tracing

开发用于正交或快速电路追踪的新型跨突触病毒载体

基本信息

  • 批准号:
    10640622
  • 负责人:
  • 金额:
    $ 112.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary To determine the anatomical basis of complex neural behavior, it is critical to have the ability to trace more than one circuit simultaneously in the same animal. That’s because complex animal behaviors or neural computation should be understood through the interaction of more than one circuit – cooperative, antagonistic, or else. In addition, it is necessary to rapidly capture the connectivity information in the dynamically changing brains during development and learning. Engineered G-deleted rabies is a current state-of-art method to retrogradely trace the presynaptic input neurons of a defined cell type. However, it remains unfeasible to trace more than one neural circuit simultaneously. In addition, the current approach using AAV helpers and rabies requires several weeks for tracing. In this proposed research, we will overcome these disadvantages by developing two novel trans-synaptic viral tracer systems: SWORD: Sendai with Orthogonal Rabies Duplex Tracing (Aim 1) and a rapid TRIO/cTRIO: cell-type specific tracing the relationship between input and output (Aim 2). This research is significant because these new methods will allow more comprehensive analysis of neural connectivity in more than one circuit and in more diverse context such as the developing brain where distinct synaptic networks emerge and neural plasticity such as learning across many model species. The proposed research is innovative, because we are developing and validating technically innovative solutions, SWORD and rapid TRIO/cTRIO, to overcome the limitations of the current state-of-the art tracing method. These viral-genetic tools will have a positive and broad impact on the neuroscience field as it will enhance our understanding of neural circuit organization for the complex behaviors and help to identify the circuit-specific therapeutic targets to cure brain disorders.
项目摘要 为了确定复杂神经行为的解剖学基础,关键是要有能力 在同一动物身上同时追踪一个以上的回路。这是因为复杂的动物 行为或神经计算应该通过一个以上的相互作用来理解。 电路-合作,对抗,或其他。此外,还必须迅速捕捉 在发育和学习过程中,大脑中动态变化的连接信息。 工程G-缺失狂犬病是目前最先进的方法,可以追溯突触前 定义的细胞类型的输入神经元。然而,追踪一个以上的神经元仍然是不可行的。 电路同时此外,目前使用AAV助手和狂犬病的方法需要 几个星期的追踪。在这项研究中,我们将克服这些缺点, 开发两种新型跨突触病毒示踪系统:SWORD:Sendai与正交 狂犬病双链体示踪(Aim 1)与快速TRIO/cTRIO:细胞类型特异性示踪的关系 输入和输出之间(目标2)。这项研究意义重大,因为这些新方法将 允许更全面地分析多个回路和多个回路中的神经连接 不同的背景,如发育中的大脑,其中出现了不同的突触网络和神经网络, 可塑性,例如在许多模型物种中学习。这项研究具有创新性, 因为我们正在开发和验证技术创新的解决方案, TRIO/cTRIO,以克服目前最先进的追踪方法的局限性。这些 病毒遗传工具将对神经科学领域产生积极和广泛的影响, 增强我们对复杂行为的神经回路组织的理解,并有助于 确定特定回路的治疗靶点,以治愈脑部疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Euiseok J Kim其他文献

Visually guided behavior in freely moving mice
  • DOI:
    10.1186/1471-2202-14-s1-p141
  • 发表时间:
    2013-07-08
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Balaji Sriram;Alberto Cruz-Martin;Laura DeNardo;Mohit Patel;Euiseok J Kim;Anirvan Ghosh
  • 通讯作者:
    Anirvan Ghosh

Euiseok J Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Euiseok J Kim', 18)}}的其他基金

Developmental Mechanisms of Fine-scale Cortico-cortical Circuit Formation
精细皮质-皮质回路形成的发育机制
  • 批准号:
    10744933
  • 财政年份:
    2023
  • 资助金额:
    $ 112.93万
  • 项目类别:

相似海外基金

Wireless CMOS device for observing real-time brain activity and animal behavior
用于观察实时大脑活动和动物行为的无线 CMOS 设备
  • 批准号:
    23K06786
  • 财政年份:
    2023
  • 资助金额:
    $ 112.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Animal, Behavior and Tissue Core
动物、行为和组织核心
  • 批准号:
    10496282
  • 财政年份:
    2023
  • 资助金额:
    $ 112.93万
  • 项目类别:
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
  • 批准号:
    RGPIN-2022-03096
  • 财政年份:
    2022
  • 资助金额:
    $ 112.93万
  • 项目类别:
    Discovery Grants Program - Individual
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
  • 批准号:
    RGPIN-2019-06689
  • 财政年份:
    2022
  • 资助金额:
    $ 112.93万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Semi-Supervised Learning Method using Compressed Video for Real-Time Animal Behavior Analysis
使用压缩视频进行实时动物行为分析的半监督学习方法的开发
  • 批准号:
    22H03637
  • 财政年份:
    2022
  • 资助金额:
    $ 112.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
  • 批准号:
    DGECR-2022-00323
  • 财政年份:
    2022
  • 资助金额:
    $ 112.93万
  • 项目类别:
    Discovery Launch Supplement
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
  • 批准号:
    10315486
  • 财政年份:
    2021
  • 资助金额:
    $ 112.93万
  • 项目类别:
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
  • 批准号:
    10412977
  • 财政年份:
    2021
  • 资助金额:
    $ 112.93万
  • 项目类别:
REU Site: Animal Behavior in Context
REU 网站:背景下的动物行为
  • 批准号:
    2050311
  • 财政年份:
    2021
  • 资助金额:
    $ 112.93万
  • 项目类别:
    Standard Grant
Molecular recording to predict cell fate decisions and animal behavior
分子记录预测细胞命运决定和动物行为
  • 批准号:
    10260139
  • 财政年份:
    2021
  • 资助金额:
    $ 112.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了