Harnessing Diverse Bioinformatic Approaches To Repurpose Drugs For Alzheimers Disease And Related Dementias
利用多种生物信息学方法重新利用治疗阿尔茨海默病和相关痴呆症的药物
基本信息
- 批准号:10744875
- 负责人:
- 金额:$ 105.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:Accelerated PhaseAccelerationAffinityAlzheimer&aposs DiseaseAlzheimer&aposs Disease PathwayAlzheimer&aposs disease brainAlzheimer&aposs disease patientAlzheimer&aposs disease related dementiaAwardAwarenessBig DataBioinformaticsBiological MarkersBiologyBrainBrain regionCellsChemicalsClinicalClinical InvestigatorClinical ResearchClinical TrialsClinical Trials DesignCollaborationsCommunitiesCompensationComputer SystemsComputer softwareDataData SetDatabasesDementiaDiagnosisDiseaseDisease ProgressionDrug PrescriptionsDrug TargetingDrug usageEconomicsElectronic Health RecordEvaluationEventExonsFDA approvedGene ExpressionGene Expression ProfileGenetic Complementation TestGenomeHumanIndividualIndustryInflammatoryInformaticsInfrastructureIsraelKidney FailureKnowledgeLaboratoriesLeadLiteratureMachine LearningMedicineMendelian randomizationMethodologyMethodsModelingNational Health ServicesNeurofibrillary TanglesNeurogliaNeuronsNew AgentsOnset of illnessOutcomePathologicPathologyPathway AnalysisPathway interactionsPatientsPatternPeripheralPharmaceutical PreparationsPharmacologyPhase II Clinical TrialsPhenotypePlacebo ControlPreventionProductionProteomeProteomicsProxyPublic DomainsRandomizedRecordsReproducibilityRiskRunningSignal TransductionSingle Nucleotide PolymorphismSiteStatistical Data InterpretationSymptomsSynapsesSystemTarget PopulationsTestingTherapeuticTherapeutic Clinical TrialUpdateWorkbiobankcandidate identificationcell typecheminformaticsclinical careclinically relevantcomputer sciencecomputerized toolscostdementia caredrug actiondrug candidatedrug repurposingfederated learninggene discoveryimaging studyimprovedinhibitorinteroperabilitykinase inhibitorlarge datasetsmeetingsmembermultidisciplinarynovelopen dataopen sourcepatient populationphase III trialpredictive markerpreferencepreventprogramsprospectiveprotein TDP-43protein expressionresponsetooltranscriptometranscriptome sequencingtranslational study
项目摘要
Abstract
The exploration of genomes, transcriptomes, and proteomes derived from brains with Alzheimer's disease
(AD) by powerful computational tools has developed new knowledge, including the identification of pathways
and targets that may be involved in the initiation and/or progression of the disease. The challenge is to find
drugs that impact those pathways and then validate the importance of those pathways – distinguishing primary
disease drivers from secondary events. Repurposing FDA-approved drugs is one approach to probe
potential pathways in proof of concept, and ultimately therapeutic, clinical trials. In this renewal application, we
propose to discover and validate hypotheses for Drug Repurposing In AD (DRIAD) through three integrated,
complementary informatics approaches. Specifically, we will extend our systems pharmacology (DRIAD-SP)
tool of classical and network aware (prior-loaded) machine learning approaches to identify pathways and
targets altered in AD brains at different stages of disease progression using data from Accelerating Medicines
Partnership-AD available through Synapse (Aim 1); we will use chemical biology and systems pharmacology
approaches to discover the target selectivity of lead kinase inhibitors within human neuronal and glial cell types
using unbiased RNA-seq, proteomic and imaging studies followed by pathway analysis (Aim 2). We will
implement additional causal inferential strategies to emulate clinical trials in electronic health records (DRIAD-
EHR) data (Aim 3), with “prospective” outcomes using three big data sets: the UK-TRE with 20 year of
longitudinal records of 50M National Health Service patients, and the RPDR Database (based at Mass General
Brigham),and the Clalit database in Israel – each with 6M individuals followed for over 20 years. Each Aim has
two approaches: data-driven, hypothesis-generating analyses to discern disease-relevant drug signals; and
hypothesis-testing in which positive findings from one approach are evaluated using the other approaches to
assess rigor and reproducibility. This coordinated program compensates for the limitations of each individual
informatics approach to promote discovery and critical evaluation of “lead compounds” for known and novel AD
pathways. To execute this strategy, we have assembled a multi-site, multi-disciplinary team with expertise
ranging from clinical care to computer science and systems pharmacology. Some of the team members are AD
experts and others bring an outsider's perspective. Finally, as a deliverable, we will continue to produce open-
source data packages to release all the supporting evidence, software, and data with provenance in
accordance with FAIR (findable, accessible, interoperable and reproducible) standards through Synapse.
These data packages have lead to one clinical trial and will help to prioritize follow on clinical and translational
studies including collaborations with industry or community members at large involved in new clinical trials.
摘要
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AI-assisted prediction of differential response to antidepressant classes using electronic health records.
- DOI:10.1038/s41746-023-00817-8
- 发表时间:2023-04-26
- 期刊:
- 影响因子:15.2
- 作者:Sheu, Yi-han;Magdamo, Colin;Miller, Matthew;Das, Sudeshna;Blacker, Deborah;Smoller, Jordan W. W.
- 通讯作者:Smoller, Jordan W. W.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARK W ALBERS其他文献
MARK W ALBERS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARK W ALBERS', 18)}}的其他基金
Defining the pathogenic relationship of TDP-43 inclusions and cytoplasmic double stranded RNA in AD and FTD
定义 AD 和 FTD 中 TDP-43 内含物和细胞质双链 RNA 的致病关系
- 批准号:
10502780 - 财政年份:2022
- 资助金额:
$ 105.47万 - 项目类别:
Longitudinal At Home Smell Testing to Detect Infection by SARS-CoV-2
纵向家庭气味测试检测 SARS-CoV-2 感染
- 批准号:
10321005 - 财政年份:2020
- 资助金额:
$ 105.47万 - 项目类别:
Longitudinal At Home Smell Testing to Detect Infection by SARS-CoV-2
纵向家庭气味测试检测 SARS-CoV-2 感染
- 批准号:
10439178 - 财政年份:2020
- 资助金额:
$ 105.47万 - 项目类别:
Harnessing Diverse BioInformatic Approaches to Repurpose Drugs for Alzheimers Disease
利用多种生物信息学方法重新利用治疗阿尔茨海默病的药物
- 批准号:
9974450 - 财政年份:2018
- 资助金额:
$ 105.47万 - 项目类别:
Harnessing Diverse BioInformatic Approaches to Repurpose Drugs for Alzheimers Disease
利用多种生物信息学方法重新利用治疗阿尔茨海默病的药物
- 批准号:
9789798 - 财政年份:2018
- 资助金额:
$ 105.47万 - 项目类别:
Harnessing Diverse BioInformatic Approaches to Repurpose Drugs for Alzheimers Disease
利用多种生物信息学方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10452499 - 财政年份:2018
- 资助金额:
$ 105.47万 - 项目类别:
Harnessing Diverse BioInformatic Approaches to Repurpose Drugs for Alzheimers Disease
利用多种生物信息学方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10212939 - 财政年份:2018
- 资助金额:
$ 105.47万 - 项目类别:
Harnessing Diverse BioInformatic Approaches to Repurpose Drugs for Alzheimer's Disease
利用多种生物信息学方法重新利用治疗阿尔茨海默病的药物
- 批准号:
9565013 - 财政年份:2017
- 资助金额:
$ 105.47万 - 项目类别:
Physiologic Mechanisms of Action of APP and APLP2 in Axon Targeting
APP 和 APLP2 在轴突靶向中作用的生理机制
- 批准号:
8623239 - 财政年份:2013
- 资助金额:
$ 105.47万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 105.47万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 105.47万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 105.47万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 105.47万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 105.47万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 105.47万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 105.47万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 105.47万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 105.47万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 105.47万 - 项目类别:
Standard Grant














{{item.name}}会员




