Learning-based 3D modeling of AMD to assess disease progression and response to treatment
基于学习的 AMD 3D 建模,用于评估疾病进展和治疗反应
基本信息
- 批准号:10592517
- 负责人:
- 金额:$ 43.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-30 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectAge related macular degenerationAngiographyAreaBlindnessClassificationComputer ModelsComputing MethodologiesDataData SetDeveloped CountriesDevelopmentDiagnosticDimensionsDiseaseDisease ProgressionDrusenDrynessEarly treatmentElderlyEvolutionFundusGoalsHumanImageIndividualInstitutionLabelLearningMapsMedical ImagingMethodsModalityModelingMorphologyMultimediaNatural HistoryNetwork-basedNeural Network SimulationNonexudative age-related macular degenerationOptical Coherence TomographyOutcomeOutputPathologicPathologyPatient-Focused OutcomesPatientsRecording of previous eventsRecordsRegistriesResearchRetinaRetinal DiseasesRiskRoboticsScanningScheduleSliceSpecific qualifier valueTechniquesTestingThickTimeTissuesTrainingVisitVisualWestern WorldWorkaging populationautomated image analysisbiomarker identificationclinical databaseclinical practiceconvolutional neural networkdeep learningdeep learning modeldeep neural networkdisease classificationdisease natural historyfeature extractionfollow-uphigh rewardhigh riskimaging biomarkerimaging modalityimprovedinclusion criteriainnovationinsightlearning strategylong short term memorylongitudinal datasetneural networknovelpatient stratificationprediction algorithmreconstructionretinal imagingspatiotemporalthree-dimensional modelingtransfer learningtreatment response
项目摘要
Abstract:
Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss in developed countries.
With the growing aging population, the burden of AMD will continue to rise. Despite significant research efforts,
we still have limited understanding of what drives the disease progression and why some patients advance to
final stages, not respond to available treatments, and have profound vision loss. To improve visual outcomes for
these patients, it is critical to develop methods that can identify individuals with early, asymptomatic changes
who are at the risk of developing advanced forms of disease. Consequently, by employing recent developments
in deep learning and automated image and video analysis, the goal of this project is to develop computational
methods and models for automated image analysis and biomarker identification to improve our understanding
of AMD and help us to predict its course. To achieve this, we will develop Deep Neural Network (DNN)-based
models to identify useful image biomarkers for AMD from different imaging modalities commonly used in clinical
practice – Optical-Coherence Tomography (OCT), Fundus Autofluorescence (FAF), and Fundus Angiography
(FA). We hypothesize that adding FAF and FA images will significantly improve localization and classification of
pathology; thus, facilitate a better understanding of the disease's natural history and response to treatment.
To execute this innovative, high-risk/high-reward project, we will use the data from The Duke Ophthalmic
Registry, the largest single-institution clinical database for ophthalmic records in the world. We have access to
a downloaded and expert-annotated large image dataset numbering over 6400 patients that meet our study's
inclusion criteria – progression of AMD from early to advanced stages (dry and wet). For each patient, OCT,
FAF, and FA images were captured during a single visit or within specified follow-up intervals (up to ten years or
more). We will develop learning-based methods and models for one-time-point image fusion and analysis;
specifically, DNN models for AMD classification (early vs. intermediate vs. advanced dry AMD vs. wet AMD),
segmentation of the diseased tissue, and 3D reconstruction of the affected area. Finally, using the longitudinal
datasets, we will develop deep-learning methods and models to analyze disease evolution over time. The critical
insight and novelty are to consider longitudinal datasets as sequences of 2D and 3D pathology models, which
allows for the use of Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM)-based neural
networks, which were recently introduced and employed for time-dependent video frame prediction in the context
of autonomous vehicles and human action recognition. The proposed research will result in early AMD patient
stratification, which will allow for individually tailored follow-up schedules and lead to timely treatments; this is
very important since the early treatment of wet AMD results in better visual outcomes.
文摘:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Majda Hadziahmetovic其他文献
Majda Hadziahmetovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 43.38万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 43.38万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 43.38万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 43.38万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 43.38万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 43.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 43.38万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 43.38万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 43.38万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 43.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




