Understanding the role of the stromal cell niche in intestinal stem cell aging

了解基质细胞生态位在肠道干细胞衰老中的作用

基本信息

  • 批准号:
    10591876
  • 负责人:
  • 金额:
    $ 13.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Project Summary Aging compromises the numbers/function of mammalian Lgr5+ intestinal stem cell (ISCs), which depend on niche factors produced by neighboring cell types like stromal cells. Although the necessity of these niche factors has been tested in vitro, many uncertainties remain regarding their in vivo sources and the impact of aging on them. To address these questions, we have focused on RSPO3, the dominant R-spondin in the mammalian intestine and Lgr5 ligand that drives ISC self-renewal. Using novel Rspo3-GFP mice, we have discovered that RSPO3 is expressed by two distinct populations in the intestinal stroma: RSPO3+GREM1+ fibroblasts (RG fibroblasts) and lymphatic endothelial cells (LECs). We have established heterotypic co-culture systems of RSPO3+ stromal cells with intestinal epithelial organoids, and have found that RG fibroblasts, more than LECs, support organoid growth. Importantly, the numbers/function of RG fibroblasts decline significantly in old mice. By RNA-seq, we have discovered that S-adenosyl-L-homocysteine hydrolase (Ahcy), a rate-limiting enzyme in methionine metabolism that hydrolyzes S-adenosyl homocysteine (SAH), is the most downregulated gene in aged mouse RG fibroblasts compared to their young counterparts. Furthermore, pharmacological inhibition of Ahcy recapitulates the age-related decline in the ability of RG fibroblasts to support ISCs, whereas short-term methionine restriction reverses the age-related decline of RG fibroblasts. We hypothesize that Ahcy loss and methionine accumulation in RG fibroblasts account for some of the age-related deficits of old ISCs that can be reversed by short-term dietary methionine restriction. In this proposal, we will test the hypothesis that RG fibroblasts are the dominant niche cells that foster ISCs in vivo (Aim 1); that loss of Ahcy leads to the age-related decline of RG fibroblasts through accumulation of methionine cycle intermediate metabolites (Aim 2); and that short-term dietary methionine restriction rejuvenates aged mouse RG fibroblasts to support ISCs and ISC-mediated regeneration (Aim 3). Through these aims, we will provide novel insights into how age-related changes in the ISC stromal niche contribute to ISC aging and how we can reverse it through modulating methionine metabolism. Identification of a new dietary intervention that may augment intestinal regeneration in old age will have important clinical implications. My goal is to discover novel insights into how aging influences stem cells with the long-term goal of translating these findings back to the clinic for the improvement of patient health. Because little is known about the aging and metabolism of stromal niche cells in ISC biology, the novel tools that I develop and the skill sets I acquire to assess metabolism of aging stromal niche cells during the K99 training period will permit me to establish a successful and independent research program as I transition to independence.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Norihiro Goto其他文献

Norihiro Goto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
  • 批准号:
    495182
  • 财政年份:
    2023
  • 资助金额:
    $ 13.67万
  • 项目类别:
Parkinson's disease and aging affect neural activation during continuous gait alterations to the split-belt treadmill: An [18F] FDG PET Study.
帕金森病和衰老会影响分体带跑步机连续步态改变期间的神经激活:[18F] FDG PET 研究。
  • 批准号:
    400097
  • 财政年份:
    2019
  • 资助金额:
    $ 13.67万
  • 项目类别:
The elucidation of the mechanism by which intestinal epithelial cells affect impaired glucose tolerance during aging
阐明衰老过程中肠上皮细胞影响糖耐量受损的机制
  • 批准号:
    19K09017
  • 财政年份:
    2019
  • 资助金额:
    $ 13.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Does aging of osteocytes adversely affect bone metabolism?
骨细胞老化会对骨代谢产生不利影响吗?
  • 批准号:
    18K09531
  • 财政年份:
    2018
  • 资助金额:
    $ 13.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Links between affect, executive function, and prefrontal structure in aging: A longitudinal analysis
衰老过程中情感、执行功能和前额叶结构之间的联系:纵向分析
  • 批准号:
    9766994
  • 财政年份:
    2018
  • 资助金额:
    $ 13.67万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9320090
  • 财政年份:
    2017
  • 资助金额:
    $ 13.67万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    10166936
  • 财政年份:
    2017
  • 资助金额:
    $ 13.67万
  • 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
  • 批准号:
    9761593
  • 财政年份:
    2017
  • 资助金额:
    $ 13.67万
  • 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
  • 批准号:
    9925164
  • 财政年份:
    2016
  • 资助金额:
    $ 13.67万
  • 项目类别:
Experimental Model of Depression in Aging: Insomnia, Inflammation, and Affect Mechanisms
衰老过程中抑郁症的实验模型:失眠、炎症和影响机制
  • 批准号:
    9345997
  • 财政年份:
    2016
  • 资助金额:
    $ 13.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了