Early Detection of Pancreatic Cancer with Human-in-the-Loop Deep Learning

通过人在环深度学习早期检测胰腺癌

基本信息

  • 批准号:
    10592060
  • 负责人:
  • 金额:
    $ 17.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-01 至 2028-04-30
  • 项目状态:
    未结题

项目摘要

The goal of this project is to leverage deep-learning algorithms on Electronic Health Records (EHRs) to improve the early detection of pancreatic ductal adenocarcinoma (PDAC), a malignancy with high mortality and morbidity. Compared to other major types of cancer in the U.S. (e.g., colorectal, prostate, breast, lung), PDAC has a uniquely high mortality with a 5-year survival of only 3%, largely due to the late stage of diagnosis and the aggressiveness of the malignancy. In this K25 application, we aim to develop novel structured methodologies for systematically incorporating human expert domain knowledge into the training procedure of deep-learning algorithms (“Human-in-the-Loop” approach) for improving the early detection of PDAC. The overarching hypothesis for this study, which has already been demonstrated in numerous other contexts, is that the “Human-in-the-Loop” approach imbues the deep learning in the PDAC prediction model with expert domain knowledge (e.g., clinical work-flows, statistical knowledge) to result in improved model performance as well as interpretability of results. The proposed research will accomplish three aims. In Aim 1, we will build preprocessing pipelines that are generalizable for analyzing multimodal data from different data collection systems (national, state, and institutional). The resultant pipelines will provide multimodal EHR deep embeddings optimized for deep learning applications in Aim 2 & 3. In Aim 2, we will investigate feature grouping strategies relying on information from clinical workflows and incorporate them into the deep learning prediction model. The proposed model will provide new clinical predictors represented by single or composite variables according to the grouping strategies. Examples in the literature show that such grouped predictors consistently have superior predictive power compared to their individual components. In Aim 3 we will study causal relationships between patient variables (including composite variables discovered in Aim 2) and the PDAC risk. We will use the Human-in-the-Loop approach where the possible causal relationships suggested from the deep learning model will be evaluated and corrected by human experts (e.g., clinicians, statisticians), to construct faithful Causal Bayesian Networks (CBNs) visualizing causal pathways from patient variables to PDAC risk. The resultant CBNs will be used as a framework for developing a risk assessment questionnaire to collect Patient- Generated Health Data (PGHD), which will be further evaluated and optimized in my future R01 focused on the development of a mobile survey application to efficiently collect PGHD and improve the early detection of PDAC. This proposal can potentially lead to new criteria for identifying high-risk patients for PDAC and inform targeted screening practices, that will likely be generalizable to other types of cancer.
该项目的目标是利用电子健康记录(EHR)的深度学习算法, 提高胰腺导管腺癌(PDAC)的早期检测,这是一种死亡率高的恶性肿瘤 和发病率。与美国其他主要类型的癌症相比(例如,结肠直肠、前列腺、乳腺、肺), PDAC具有独特的高死亡率,5年生存率仅为3%,这主要是由于诊断的晚期 和恶性肿瘤的侵袭性在这个K25应用程序中,我们的目标是开发新的结构化 系统地将人类专家领域知识纳入培训程序的方法 深度学习算法(“人在回路”方法),用于改善PDAC的早期检测。的 这项研究的首要假设已经在许多其他背景下得到证明, “人在回路”方法将深度学习融入PDAC预测模型, 领域知识(例如,临床工作流程,统计知识),以提高模型性能, 以及结果的可解释性。 这项研究将实现三个目标。在目标1中,我们将构建预处理管道, 可推广用于分析来自不同数据收集系统(国家、州和 机构)。由此产生的管道将提供多模式EHR深度嵌入, 目标2和目标3中的学习应用。在目标2中,我们将研究依赖于 从临床工作流程中提取信息,并将其纳入深度学习预测模型。的 所提出的模型将提供由单个或复合变量表示的新的临床预测因子, 分组策略。文献中的例子表明,这种分组的预测因子始终具有 与其单个组件相比,具有上级预测能力。在目标3中,我们将研究因果关系 患者变量(包括目标2中发现的复合变量)和PDAC风险之间的关系。我们将使用 人在回路方法,其中从深度学习中提出的可能的因果关系 模型将由人类专家评估和校正(例如,临床医生,统计学家),以构建忠实的 因果贝叶斯网络(CBN)可视化从患者变量到PDAC风险的因果路径。的 由此产生的CBN将被用作开发风险评估问卷的框架,以收集患者- 生成的健康数据(PGHD),这将在我未来的R 01中进一步评估和优化,重点是 开发一种移动的调查应用程序,以有效地收集PGHD,并提高早期发现 PDAC。 这一建议可能会导致新的标准,以确定高风险患者的PDAC和通知 有针对性的筛查实践,这可能会推广到其他类型的癌症。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiheum Park其他文献

Jiheum Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 17.86万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 17.86万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 17.86万
  • 项目类别:
    EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 17.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了