Metabolic regulation of muscle satellite cell homeostasis
肌肉卫星细胞稳态的代谢调节
基本信息
- 批准号:10591847
- 负责人:
- 金额:$ 50.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylationAdipocytesAdultAffectAgingBiochemicalBiogenesisCatabolismCell CycleCell Differentiation processCell Fate ControlCell NucleusCell ProliferationCell RespirationCell physiologyCellsCellular Metabolic ProcessCellular biologyCentrosomeCitric Acid CycleCuesDNADataDegenerative DisorderDevelopmentEnergy SupplyExhibitsFatty AcidsGrowthHomeostasisIn VitroInjuryKnowledgeLabelLaboratoriesLinkLipidsLipolysisMaintenanceMapsMediatingMetabolicMetabolic PathwayMetabolismMitochondriaMolecularMolecular ProfilingMuscleMuscle functionMuscle satellite cellMyoblastsNatural regenerationNutrientOrganellesPathogenesisPathologicPatternPhosphorylationPlayProductionProliferatingProtein AcetylationProteinsRegenerative capacityRegulationReportingRoleSTK11 geneSelf-Injurious BehaviorSignal TransductionSisterSkeletal MuscleSkeletal Muscle Satellite CellsSystemTestingTranslatingTransplantationWorkfatty acid oxidationglucose metabolismimprovedin vivoinjury and repairinsightlipid biosynthesislipid mediatorlipid metabolismlipidomicsmetabolomicsmuscle regenerationnerve stem cellnovelpostnatalregeneration functionrepairedresponse to injurysatellite cellsegregationself renewing cellself-renewalstem cell biologystem cell fatestem cell functionstem cellstissue stem cellstumor metabolism
项目摘要
Metabolic regulation of muscle satellite cell homeostasis and function
Abstract
Muscle satellite cells (MuSCs) are resident stem cells in the skeletal muscle responsible for its postnatal growth,
maintenance and regeneration. MuSCs in adult homeostatic muscles are predominantly in the quiescent state.
In response to injury, quiescent MuSCs are activated, enter the cell cycle and proliferate as myoblasts, then
differentiate to repair the injury or self-renew to replenish the stem cell pool. The homeostasis of these various
cell states (quiescence, activation, proliferation, differentiation and self-renewal) is necessary to support multiple
rounds of successful and sustainable regeneration throughout the lifetime. Despite the remarkable progress
accomplished in the past decades, the key regulators and signaling mechanisms underlying the homeostasis
and function of MuSCs remain elusive. Lipid droplets (LDs) are cellular organelles commonly found in
adipocytes, where they function as a central hub for lipid biosynthesis, storage and utilization that are crucial for
cell metabolism and signaling. Recent studies have begun to elucidate a paramount role of LDs in cancer cell
metabolism and pathogenesis, but the presence and role of LDs in tissue stem cells including MuSCs have only
been explored very recently. Preliminary studies in the PI's laboratory have led to the discovery of highly dynamic
LDs in MuSCs along their myogenic progression in vitro and in vivo. Specifically, LDs are not present in any
quiescent MuSCs but emerge in activated MuSCs and increase in abundance in proliferating myoblasts.
Strikingly, unequal distribution of LDs is observed in some newly divided sister cells exhibiting hallmarks of
asymmetric cell fate segregation. In addition, fatty acid metabolic pathways are dynamically regulated in a pattern
similar to the dynamics of LDs, and perturbations of fatty acid oxidation (FAO) disrupts MuSC homeostasis and
function. Based on these observations, it is hypothesized that LDs regulate MuSC homeostasis and function
through influencing cellular energy supply and/or lipid metabolite-mediated signaling. Two aims are
developed to test this central hypothesis. The first aim will examine the role of LDs in MuSC homeostasis and
regenerative function in vivo. The second aim will dissect how LD dynamics are regulated and how lipid
metabolism in turn regulates MuSC homeostasis and function. Completion of the proposed study is expected to
establish LDs as a novel cell fate marker and understand how lipid metabolism regulates MuSC fates. Previous
studies have identified immortal DNA strands, centrosomes, mitochondria and various proteins as cell fate
determinants, the identification of LD as an additional cell fate regulator opens a new chapter in stem cell biology.
The knowledge will also facilitate the development of mitigation strategies to improve the regeneration and
function of skeletal muscles during aging or under pathological conditions.
肌肉卫星细胞稳态和功能的代谢调控
摘要
肌肉卫星细胞(MuSCs)是骨骼肌中的常驻干细胞,负责其出生后的生长,
维护和再生。成年内稳肌肉中的MSC主要处于静止状态。
作为对损伤的反应,静止的MuSCs被激活,进入细胞周期,并以成肌细胞的形式增殖,然后
分化修复损伤或自我更新以补充干细胞库。这些不同物种的动态平衡
细胞状态(静止、激活、增殖、分化和自我更新)是支持多个
在一生中成功和可持续的几轮再生。尽管取得了显著的进步
在过去的几十年里完成的,关键的调节器和信号机制基础上的动态平衡
而MSC的功能仍然难以捉摸。脂滴(LDs)是一种细胞细胞器,常见于
脂肪细胞作为脂肪生物合成、储存和利用的中心枢纽,这对
细胞新陈代谢和信号传递。最近的研究已经开始阐明LDS在癌细胞中的重要作用
代谢和发病机制,但LDS在包括MSC在内的组织干细胞中的存在和作用
最近才被探索过。PI实验室的初步研究导致发现了高度动态的
骨髓间充质干细胞在体外和体内肌源性进展中的LDs。具体地说,LD不存在于
静止的MSC出现在激活的MUSCs中,而在增殖的成肌细胞中丰度增加。
值得注意的是,在一些新分裂的姐妹细胞中观察到LDS的不均匀分布,表现出
不对称的细胞命运分离。此外,脂肪酸代谢途径以一种模式进行动态调节
与LDS的动态相似,脂肪酸氧化的扰动(FAO)破坏了MUSC的动态平衡和
功能。基于这些观察,假设LDS调节MUSC的动态平衡和功能
通过影响细胞能量供应和/或脂代谢产物介导的信号转导。两个目标是
是为了测试这一中心假设而开发的。第一个目标将研究LDS在MUSC动态平衡和
体内的再生功能。第二个目标将剖析LD动力学是如何调节的,以及脂类是如何
代谢反过来调节MUSC的动态平衡和功能。拟议的研究预计将于
建立LDS作为一种新的细胞命运标记,并了解脂代谢如何调节MUSC的命运。上一首
研究已经确定了不朽的dna链、中心体、线粒体和各种蛋白质是细胞的命运。
作为一种额外的细胞命运调节因子,LD的发现开启了干细胞生物学的新篇章。
这些知识还将有助于制定缓解战略,以改善再生和
骨骼肌在衰老或病理状态下的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shihuan Kuang其他文献
Shihuan Kuang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shihuan Kuang', 18)}}的其他基金
Targeting PTEN to ameliorate muscular dystrophy in a mouse model
靶向 PTEN 可改善小鼠模型中的肌营养不良症
- 批准号:
10387351 - 财政年份:2022
- 资助金额:
$ 50.3万 - 项目类别:
Targeting PTEN to ameliorate muscular dystrophy in a mouse model
靶向 PTEN 改善小鼠模型中的肌营养不良症
- 批准号:
10557207 - 财政年份:2022
- 资助金额:
$ 50.3万 - 项目类别:
相似国自然基金
支链氨基酸代谢紊乱调控“Adipocytes - Macrophages Crosstalk”诱发2型糖尿病脂肪组织功能和结构障碍的作用及机制
- 批准号:81970721
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
New development of cellular regeneration therapy in jaw bone using stem cells derived from adipocytes jaw bone
利用颌骨脂肪细胞来源的干细胞进行颌骨细胞再生治疗的新进展
- 批准号:
23K16058 - 财政年份:2023
- 资助金额:
$ 50.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A novel mechanism of insulin resistance mediated by uric acid metabolism in adipocytes
脂肪细胞尿酸代谢介导胰岛素抵抗的新机制
- 批准号:
23K10969 - 财政年份:2023
- 资助金额:
$ 50.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hypertrophic adipocytes as biophysical mediators of breast cancer progression
肥大脂肪细胞作为乳腺癌进展的生物物理介质
- 批准号:
10751284 - 财政年份:2023
- 资助金额:
$ 50.3万 - 项目类别:
Elucidation of mechanisms for conversion of adipocytes to cancer-associated fibroblasts in osteosarcoma microenvironment
阐明骨肉瘤微环境中脂肪细胞转化为癌症相关成纤维细胞的机制
- 批准号:
23K19518 - 财政年份:2023
- 资助金额:
$ 50.3万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Study on UCP-1 independent metabolic regulation by brown adipocytes
棕色脂肪细胞对UCP-1独立代谢调节的研究
- 批准号:
23K18303 - 财政年份:2023
- 资助金额:
$ 50.3万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of adipocytes for gene therapy that avoids cellular stress due to overexpression of therapeutic proteins
开发用于基因治疗的脂肪细胞,避免因治疗蛋白过度表达而造成的细胞应激
- 批准号:
23H03065 - 财政年份:2023
- 资助金额:
$ 50.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Functional analysis of bitter taste receptors in adipocytes and hepatocytes
脂肪细胞和肝细胞中苦味受体的功能分析
- 批准号:
23K05107 - 财政年份:2023
- 资助金额:
$ 50.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NKA/CD36 signaling in adipocytes promotes oxidative stress and drives chronic inflammation in atherosclerosis
脂肪细胞中的 NKA/CD36 信号传导促进氧化应激并驱动动脉粥样硬化的慢性炎症
- 批准号:
10655793 - 财政年份:2023
- 资助金额:
$ 50.3万 - 项目类别:
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 50.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NKT cell activation depend on lipid accumulation in adipocytes
NKT 细胞的激活取决于脂肪细胞中的脂质积累
- 批准号:
22K08679 - 财政年份:2022
- 资助金额:
$ 50.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




