The Role of Mitochondrial TNAP in Adaptive Thermogenesis
线粒体 TNAP 在适应性产热中的作用
基本信息
- 批准号:10591696
- 负责人:
- 金额:$ 12.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-01 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAccelerationAddressAdipocytesAdipose tissueAdvisory CommitteesAlkaline PhosphataseAmino Acid SequenceAnimalsAreaAutomobile DrivingBinding ProteinsBiochemicalBiologicalBiologyBiophysicsCardiovascular DiseasesCellsChemicalsConsumptionCreatineCysteineDana-Farber Cancer InstituteDataDiabetes MellitusDiseaseDoctor of PhilosophyElementsEnergy MetabolismEnsureEnvironmentEventFatty LiverFatty acid glycerol estersFutile CyclingGenerationsGenesGeneticGoalsHydrolysisImmunoprecipitationKidney DiseasesLaboratoriesLaboratory ResearchLinkMalignant NeoplasmsMediatorMedicalMembrane MicrodomainsMetabolicMetabolic DiseasesMetabolismMethodsMitochondriaMitochondrial ProteinsMolecularMouse StrainsMusMuscle FibersMutation AnalysisObesityOxidative PhosphorylationPathway interactionsPhosphocreatinePhosphorylationPhysiologicalPlayPost-Translational Protein ProcessingPreventionProcessProtein DephosphorylationProteinsProteomeProteomicsPublic HealthReactive Oxygen SpeciesRegulationReporterResearchResearch PersonnelRespirationRoleSignal TransductionSpecificityTestingTherapeuticThermogenesisTissue EngineeringTissuesTransgenic MiceTransportationTravelVariantVisualizationWorkadipocyte biologycareercellular imagingdiet-induced obesitygain of functiongenetic approachimaging approachimaging studyinnovationmedical schoolsmetabolic abnormality assessmentnovelobesity preventionobesity treatmentoperationpharmacologicpolypeptideprotein transportred fluorescent proteintherapeutic targettrafficking
项目摘要
Abstract
Thermogenic adipocytes and adaptive thermogenesis are promising therapeutic targets for treating and
preventing obesity and obesity-linked diabetes. We recently demonstrated that the mitochondrial tissue-
nonspecific alkaline phosphatase, TNAP, plays a crucial role in the futile creatine cycle (FCC) and adaptive
thermogenesis by hydrolyzing phosphocreatine. Pharmacological inhibition or genetic ablation of TNAP in mice
reduces systemic energy expenditure. Genetic ablation of TNAP in mice also causes rapid-onset obesity. TNAP
assumes a mitochondrial localization specifically in thermogenic adipocytes, which might ensure the cell-
selectivity of the phosphocreatine hydrolysis events and the FCC operation. Here, we propose to study the
metabolic effects of gain-of- function of TNAP in the adipose tissues in mice, as well as the molecular mechanism
and regulation of its mitochondrial localization. Using a transgenic mouse strain that artificially expresses TNAP
in the adipose tissues, we will investigate its effects on obesity, diabetes, fatty liver, and energy expenditure. To
study the TNAP localization, we will test whether its cell specificity lies in the TNAP polypeptide or its trafficking
pathway, or both. I will first determine whether there are any molecular elements (e.g., PTMs or amino acid
sequences) on the TNAP polypeptide crucial for its mitochondrial localization. This will be done using a
combination of biochemical and cell imaging approaches. In addition, we will investigate the cellular pathway of
TNAP trafficking to mitochondria. We will interrogate the role of lipid rafts in TNAP localization. This might allow
us to identify key regulators and mediators of the mitochondrial localization of TNAP. Finally, we will identify
other mitochondrial proteins that share the localization pathway of TNAP and study their functions.
The candidate, Dr. Yizhi Sun, has a strong track record of innovative research with a focus on the molecular
mechanisms of diseases. The candidate’s career goal is to become an independent academic investigator with
a research laboratory oriented towards understanding and reversing obesity and obesity-linked metabolic
disorders. The proposed research will be conducted in the laboratory of Bruce Spiegelman, PhD at Dana-Farber
Cancer Institute and Harvard Medical School, who is a leader in the fields of molecular metabolism and adipocyte
biology. The proposed studies will also bring together leading laboratories of the advisory committee that have
expertise in cell imaging, protein trafficking, and mitochondrial biology. All of these, together with the ideal
research environment in the Longwood Medical Area, will maximize applicant’s potential to successfully
transition to an independent investigator.
抽象的
热脂肪细胞和自适应热发生是治疗和
预防肥胖和肥胖连接糖尿病。我们最近证明了线粒体组织
非特异性酒精磷酸酶TNAP在徒劳的肌酸周期(FCC)和自适应中起着至关重要的作用
通过水解磷酸蛋白的热生成。小鼠TNAP的药理抑制或遗传消融
减少系统性能量消耗。小鼠TNAP的遗传消融也会引起快速发作的肥胖症。 TNAP
假设在热脂肪细胞中专门用于线粒体定位,这可以确保细胞
磷酸盐水解事件和FCC操作的选择性。在这里,我们建议研究
TNAP在小鼠脂肪组织中的代谢作用以及分子机制
并调节其线粒体定位。使用人为表达TNAP的转基因小鼠菌株
在脂肪组织中,我们将研究其对肥胖,糖尿病,脂肪肝和能量消耗的影响。到
研究TNAP定位,我们将测试其细胞特异性是否在于TNAP多肽还是贩运
路径,或两者兼而有之。我将首先确定是否有任何分子元素(例如PTMS或氨基酸
序列)在TNAP多肽对线粒体定位至关重要的情况下。这将使用
生化和细胞成像方法的组合。此外,我们将研究
TNAP贩运线粒体。我们将询问脂质筏在TNAP定位中的作用。这可能允许
美国确定TNAP线粒体定位的关键调节剂和介体。最后,我们将确定
其他线粒体蛋白共享TNAP的定位途径并研究其功能。
候选人Yizhi Sun博士拥有创新研究的良好记录,重点是分子
疾病的机制。候选人的职业目标是成为独立的学术研究员
一个研究实验室,旨在理解和逆转肥胖和与肥胖相关的代谢
疾病。拟议的研究将在Dana-Farber博士的Bruce Spiegelman实验室进行
癌症研究所和哈佛医学院,他是分子代谢和脂肪细胞领域的领导者
生物学。拟议的研究还将汇集咨询委员会的领先实验室
细胞成像,蛋白质运输和线粒体生物学方面的专业知识。所有这些,以及理想
朗伍德医疗区的研究环境将最大化申请人成功的潜力
过渡到独立研究者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yizhi Sun其他文献
Yizhi Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mechanisms of Cardiac Injury Resolution by CX3CR1+ Macrophages
CX3CR1巨噬细胞解决心脏损伤的机制
- 批准号:
10719459 - 财政年份:2023
- 资助金额:
$ 12.9万 - 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
- 批准号:
10742569 - 财政年份:2023
- 资助金额:
$ 12.9万 - 项目类别:
Development of a new class of BLVRB-targeted redox therapeutics in breast cancer
开发一类新型 BLVRB 靶向乳腺癌氧化还原疗法
- 批准号:
10759653 - 财政年份:2023
- 资助金额:
$ 12.9万 - 项目类别:
Microvascular Neuroimaging in Age-related Alzheimer's Disease and Tauopathies
年龄相关性阿尔茨海默病和 Tau蛋白病的微血管神经影像学
- 批准号:
10738372 - 财政年份:2023
- 资助金额:
$ 12.9万 - 项目类别:
PGRMC Proteins as Markers of Fertility and Overall Health Status
PGRMC 蛋白作为生育力和整体健康状况的标志
- 批准号:
10729068 - 财政年份:2023
- 资助金额:
$ 12.9万 - 项目类别: