Deep Learning-reinforced Engineering of Pancreatic Organoids with Micro-nano Biomaterials for Type 1 Diabetes Treatment

利用微纳米生物材料深度学习强化胰腺类器官工程治疗 1 型糖尿病

基本信息

  • 批准号:
    10592297
  • 负责人:
  • 金额:
    $ 2.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY An estimated 1.6 million Americans are currently living with type 1 diabetes. The most common method of treating type 1 diabetes is through daily blood monitoring and insulin injections, which can affect quality of life and may result in severe health issues. Full pancreatic transplantations are a more permanent treatment option but involve invasive surgery that can lead to complications, has a high morbidity rate, and patients are required to take immunosuppressants for the rest of their lives which can be very detrimental to health. One method for diabetes treatment that has become a promising option and focus of a lot of research is islet transplantation, which is a much less invasive method but still requires patients to take immunosuppressants or risk transplantation rejection. A way to prevent the need for immunosuppressants post-transplantation is through encapsulating the islets in biomaterials which can allow nutrient exchange while mitigating immune rejection by preventing immune cell infiltration. Encapsulated islet transplantation still faces many problems including immune responses and poor islet viability post-transplantation, which may be addressed using engineering and biomaterials as proposed in this project. Aim 1 will focus on developing novel microencapsulation methods, which we hypothesize will result in lower islet cell death and lower post-transplantation immune responses in vivo. Microfluidic encapsulation of islets gives greater control over microcapsule composition and configuration than other encapsulation methods. Using this method, a biomimetic encapsulation that mimics the structure of the pancreas and uses materials in a core-and-shell design can be achieved. Implementing a label-free deep learning detection method to selectively pick islet-laden microcapsules from empty capsules on-chip to obtain a highly pure sample of islet-laden microcapsules for transplantation, may greatly improve the efficiency and minimize contamination (and associated immune response), compared to tedious manual sorting methods used in the past. Furthermore, the islets will be co-encapsulated with pancreatic stromal cells to create a biomimetic microenvironment (i.e., pancreatic organoid). The microencapsulated islets will be rigorously characterized in vitro and tested in vivo in a diabetic mouse model by monitoring blood glucose levels of the mice. Aim 2 will focus on developing a nanoparticle-based strategy for further improving the survival of the microencapsulated islets. Physiological amounts of antioxidants show enhanced islet survival post-transplantation. Encapsulating antioxidants in nanoparticles can improve the uptake and allow for sustained release during islet transplantation. Effect of the antioxidant-laden nanoparticles on islet survival and insulin production will be tested in vitro and then their effects on blood glucose levels tested in vivo. Through a combination of deep learning-enabled selective extraction, core-shell hydrogel microencapsulation, and nanoparticle-mediatexd antioxidants delivery, major challenges facing islet transplantation may be addressed. This novel multiscale engineering strategy has great potential for clinical translation to be widely used for treating type 1 diabetes.
项目总结 据估计,目前有160万美国人患有1型糖尿病。最常见的方法是 1型糖尿病的治疗是通过每天的血液监测和胰岛素注射,这可能会影响生活质量 并可能导致严重的健康问题。全胰腺移植是一种更持久的治疗选择 但涉及可能导致并发症的侵入性手术,发病率高,需要患者 在他们的余生中服用免疫抑制剂,这可能对健康非常有害。一种方法可用于 胰岛移植是治疗糖尿病的一种有希望的选择,也是许多研究的重点。 这是一种侵入性小得多的方法,但仍需要患者服用免疫抑制剂或冒险 移植排斥反应。防止移植后需要免疫抑制剂的一种方法是通过 将胰岛包裹在生物材料中,允许营养交换,同时通过以下方式减轻免疫排斥反应 防止免疫细胞渗透。囊化胰岛移植仍面临许多问题,包括免疫 移植后的反应和较差的胰岛生存能力,这可以通过工程和 本项目中提出的生物材料。目标1将专注于开发新的微胶囊方法, 我们假设这将导致较低的胰岛细胞死亡和较低的移植后免疫反应 活着。胰岛的微流控胶囊使微囊的成分和形态得到更好的控制 而不是其他封装方法。使用这种方法,一种仿生封装模仿了 胰腺和使用材料的核壳设计是可以实现的。实现无标签深度 一种片上空囊中选择性挑选胰岛微囊的学习检测方法 高纯度的胰岛微囊移植样品,可以大大提高移植的效率和 与使用繁琐的手动分类方法相比,最大限度地减少污染(和相关的免疫反应) 在过去。此外,胰岛将与胰腺基质细胞共同包裹,以创建仿生的 微环境(即胰腺类器官)。微囊化的胰岛将在 通过监测糖尿病小鼠的血糖水平,在体外和体内测试糖尿病小鼠模型。目标2将 专注于开发基于纳米颗粒的战略,以进一步提高微胶囊的存活率 小岛。生理剂量的抗氧化剂显示移植后胰岛存活率提高。正在封装 在胰岛移植过程中,纳米粒中的抗氧化剂可以改善摄取并允许持续释放。 携带抗氧化剂的纳米颗粒对胰岛存活和胰岛素产生的影响将在体外和 然后在体内测试它们对血糖水平的影响。通过支持深度学习的 选择性萃取、核壳水凝胶微胶囊化和纳米颗粒介体抗氧化剂输送, 胰岛移植面临的主要挑战可能会得到解决。这一新的多尺度工程战略具有 临床翻译具有广泛应用于治疗1型糖尿病的巨大潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alisa White其他文献

Alisa White的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alisa White', 18)}}的其他基金

Deep Learning-reinforced Engineering of Pancreatic Organoids with Micro-nano Biomaterials for Type 1 Diabetes Treatment
利用微纳米生物材料深度学习强化胰腺类器官工程治疗 1 型糖尿病
  • 批准号:
    10389894
  • 财政年份:
    2022
  • 资助金额:
    $ 2.39万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 2.39万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了