A novel mouse model to distinguish the specific physiological significance of RNAi and biophysical mechanisms of microRNA
区分RNAi特定生理意义和microRNA生物物理机制的新型小鼠模型
基本信息
- 批准号:10592248
- 负责人:
- 金额:$ 19.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:3&apos Untranslated RegionsAdultAgeAnimal ModelApoptosisArrhythmiaBindingBiologicalBiophysical ProcessBiophysicsCardiac MyocytesCell ProliferationCellsColonCrossbreedingDefectDevelopmentDoxycyclineDuchenne muscular dystrophyEctopic ExpressionElectrophysiology (science)EventEvolutionGene ExpressionGenesGenitourinary systemHeartHeart DiseasesHeart failureHomeostasisHourHumanHuman GenomeInvestigationIon ChannelKir2.1 channelKnock-in MouseKnock-outKnockout MiceLong-Term EffectsLungMalignant Epithelial CellMalignant NeoplasmsMetabolismMicroRNAsModelingMusMuscleMuscle CellsMuscular DystrophiesMyocardial dysfunctionNucleotidesOrganOrganogenesisPhenotypePhysiologicalPhysiologyPlayPrimary carcinoma of the liver cellsProteinsPumpRNA InterferenceRegulationRoleSingle Nucleotide PolymorphismSkeletal MuscleSymptomsSystemTetanus Helper PeptideThyroid GlandTissuesTransgenic MiceTranslational RepressionUntranslated RNAWeaningbiological adaptation to stresscancer typecardiogenesiscell growthhuman diseasein vivoinward rectifier potassium channelknock-downmRNA Transcript Degradationmature animalmouse genomemouse modelnovelnovel therapeutic interventionpostnatalposttranscriptionalprotein expressionsarcomatooltumorigenesis
项目摘要
Project Summary
MicroRNAs (miRs) are evolutionally conserved small non-coding RNA molecules and control most biological
events, including apoptosis, cell proliferation, metabolism, cell fate determination, organogenesis, development,
stress responses, and tumorigenesis. Classically, miRs are known to negatively regulate gene expression
through RNA interference (RNAi) mechanism. Recently, we revealed a novel biophysical action of miR1, which
is the most predominant miR in the heart and is downregulated in human heart failure. We discovered that
miR1directly binds to inward rectifier potassium channel Kir2.1, resulting in direct suppression of the IK1
current and leading to biophysical modulation of cardiomyocyte cellular electrophysiological functions. Our
studies suggest that miR1 modulates the development and homeostasis of tissues/organs through two
different mechanisms: the immediate effect (seconds to minutes) of newly-discovered biophysical modulation
and long-term effect (hours to days) of RNAi. With this important new finding, it now becomes essential to
understand how these two distinct miRs mechanisms of action coordinate to regulate the development and
homeostasis of our body. However, there is no valid model that can distinguish the specific physiology
significance of biophysical modulation versus RNAi mechanism. We found that an arrhythmia-associated
hSNP14A/G specifically defects the biophysical action while maintaining miR1’s RNAi function; therefore, we
propose to develop a unique transgenic mouse model that can separate the specific contribution coming from
the biophysical modulation and dissect the pure contribution of RNAi in maintain the homeostasis of multi
organs/systems. We will develop miR1-full-KO/muscle-specific inducible hSNP14A/G-knock-in mice, and we
hypothesize that an expression of hSNP14A/G in muscle cells could rescue the postnatal lethality of miR1-full-
KO mice. We will investigate if lacking biophysical function of hSNP14A/G induces any abnormal phenotypes
(Aim 1), such as arrhythmia, heart failure, and abnormal contractility of skeletal muscle, which will demonstrate
the specific role of miR1’s biophysical modulation in regulation of the homeostasis in vivo. We will also turn off
the expression of hSNP14A/G by administration of doxycycline and investigate the specific physiological
significance of miR1’s RNAi mechanism in the heart (Aim 2). This unique animal model will be very valuable to
investigate the critical role of miR1 in multiple organs/systems, including the heart, skeletal muscle, various
types of cancers. Understanding the specific contributions of miR’s biophysical modulation and RNAi in vivo
will expand the biological significance of miRs and guide us to develop new therapeutic approaches for human
diseases through targeting of miRs.
项目总结
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adipogenic Signaling Promotes Arrhythmia Substrates before Structural Abnormalities in TMEM43 ARVC.
- DOI:10.3390/jpm12101680
- 发表时间:2022-10-09
- 期刊:
- 影响因子:0
- 作者:Vasireddi, Sunil K.;Sattayaprasert, Prasongchai;Yang, Dandan;Dennis, Adrienne T.;Bektik, Emre;Fu, Ji-Dong;Mackall, Judith A.;Laurita, Kenneth R.
- 通讯作者:Laurita, Kenneth R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jidong Fu其他文献
Jidong Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jidong Fu', 18)}}的其他基金
A novel mouse model to distinguish the specific physiological significance of RNAi and biophysical mechanisms of microRNA
区分RNAi特定生理意义和microRNA生物物理机制的新型小鼠模型
- 批准号:
10351415 - 财政年份:2022
- 资助金额:
$ 19.69万 - 项目类别:
相似海外基金
Impact of alternative polyadenylation of 3'-untranslated regions in the PI3K/AKT cascade on microRNA
PI3K/AKT 级联中 3-非翻译区的替代多聚腺苷酸化对 microRNA 的影响
- 批准号:
573541-2022 - 财政年份:2022
- 资助金额:
$ 19.69万 - 项目类别:
University Undergraduate Student Research Awards
How do untranslated regions of cannabinoid receptor type 1 mRNA determine receptor subcellular localisation and function?
1 型大麻素受体 mRNA 的非翻译区如何决定受体亚细胞定位和功能?
- 批准号:
2744317 - 财政年份:2022
- 资助金额:
$ 19.69万 - 项目类别:
Studentship
MICA:Synthetic untranslated regions for direct delivery of therapeutic mRNAs
MICA:用于直接递送治疗性 mRNA 的合成非翻译区
- 批准号:
MR/V010948/1 - 财政年份:2021
- 资助金额:
$ 19.69万 - 项目类别:
Research Grant
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10019570 - 财政年份:2019
- 资助金额:
$ 19.69万 - 项目类别:
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10223370 - 财政年份:2019
- 资助金额:
$ 19.69万 - 项目类别:
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10455108 - 财政年份:2019
- 资助金额:
$ 19.69万 - 项目类别:
Synergistic microRNA-binding sites, and 3' untranslated regions: a dialogue of silence
协同的 microRNA 结合位点和 3 非翻译区:沉默的对话
- 批准号:
255762 - 财政年份:2012
- 资助金额:
$ 19.69万 - 项目类别:
Operating Grants
Analysis of long untranslated regions in Nipah virus genome
尼帕病毒基因组长非翻译区分析
- 批准号:
20790351 - 财政年份:2008
- 资助金额:
$ 19.69万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Search for mRNA elements involved in the compatibility between 5' untranslated regions and coding regions in chloroplast translation
寻找参与叶绿体翻译中 5 非翻译区和编码区之间兼容性的 mRNA 元件
- 批准号:
19370021 - 财政年份:2007
- 资助金额:
$ 19.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Post-transcriptional Regulation of PPAR-g Expression by 5'-Untranslated Regions
5-非翻译区对 PPAR-g 表达的转录后调控
- 批准号:
7131841 - 财政年份:2006
- 资助金额:
$ 19.69万 - 项目类别:














{{item.name}}会员




