Development and Validation of a Prediction Model for Longitudinal Fall Risk in Older Adults
老年人纵向跌倒风险预测模型的开发和验证
基本信息
- 批准号:10592365
- 负责人:
- 金额:$ 11.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAgingAwardBig DataBiometryBody CompositionCaregiversCaringClinicalCommunicationDangerousnessDataData AnalysesData SetDedicationsDependenceDevelopmentEarly identificationEducational workshopElderlyElectronic Health RecordEnvironmentFutureGeriatricsGerontologyGoalsGrantHealthHealthcareHealthcare SystemsIndividualInformaticsJournalsKnowledgeKnowledge acquisitionLeadershipLearningLongitudinal cohort studyMachine LearningMeasurementMeasuresMedicineMentorsMethodologyMethodsModelingMorbidity - disease rateOutcomeOutcome MeasureParticipantPatient-Focused OutcomesPatientsPerformancePersonsPredictive ValuePreventive careProcessProviderResearchResearch PersonnelResearch ProposalsRiskRisk FactorsSamplingStatistical MethodsTechniquesTestingTimeTrainingTreesValidationVisitWorkWritingadverse outcomeagedcareercareer developmentexperiencefall riskfallsfollow-upforestfunctional declinefunctional statushealth datahigh riskimprovedinnovationmachine learning methodmachine learning modelmedical schoolsmortalitynovelpredictive modelingpreventive interventionresearch and developmentresearch studysevere injuryskillsstemsymposium
项目摘要
ABSTRACT
My goal is to establish myself as an independent biostatistical researcher who develops and validates
prediction models that are critical to identifying older adults at high risk of adverse health outcomes using novel
machine learning methodology. My passion for developing prediction models for health outcomes in older
adults stems from my desire to help people, especially older adults who are vulnerable. I developed a machine
learning method called Binary Mixed Model (BiMM) forest, which is particularly suited for developing prediction
models for repeated measures of outcomes in older adults because it accommodates dynamic fluctuations
over time which are common in aging (e.g., functional status). Environment: Wake Forest School of Medicine
is a nationally-recognized leader in geriatric research and provides an outstanding environment for
accomplishing my goals. Mentors: I have an excellent interdisciplinary mentoring team consisting of experts in
aging, biostatistics and informatics who are dedicated to supporting me in completing the research and training
aims proposed in this K25 grant. Training: I will complete activities aimed to address gaps in my training with
the guidance of my mentoring team. My Training Objectives are to 1) acquire knowledge about gerontology
and geriatrics, 2) deepen my understanding of missing data mechanisms and techniques, 3) learn about the
appropriate use of electronic health record (EHR) data for research purposes, and 4) develop leadership,
networking, communication and grant writing skills. To accomplish these objectives, I will attend conferences,
seminars, journal club, case conferences and writing workshops, observe a geriatric clinician, and complete
coursework. The K25 grant will allow me to extend previous training, which will provide me superior
knowledge, experience and skills for my future as a biostatistical researcher in aging. Research: Early
identification of older adults at-risk of falling is critical so that preventative care plans may be implemented to
improve patient outcomes and reduce burden on the health care system. Most current prediction models
cannot handle repeated measurements over time and have not been used with EHR data. I propose to use my
BiMM forest method to develop a prediction model for fall risk over time. My Research Specific Aims are to 1)
impute (fill in) missing predictor data in Health, Aging, and Body Composition (Health ABC) Study with a novel
machine learning method (BiMM forest); 2) develop a prediction model for identifying older adults at-risk for
falls; and 3) assess the feasibility of using EHR data to externally validate the prediction model. The prediction
model developed in this proposal will aid in identification of at-risk individuals for falls, allowing providers to
intervene early to reduce the burden of falls for patients, caregivers and healthcare systems. Results from this
grant will provide a basis for future R01 submissions to further validate the prediction model using EHR data
from multiple health care centers and evaluate the clinical utility of the model in practice.
摘要
我的目标是建立自己作为一个独立的生物统计研究人员谁开发和验证
预测模型对于使用新方法识别处于不良健康结果高风险的老年人至关重要
机器学习方法论。我对开发老年人健康结果预测模型的热情
成年人源于我帮助人们的愿望,特别是那些脆弱的老年人。我发明了一种机器
一种称为二元混合模型(BiMM)森林的学习方法,特别适合于开发预测
老年人结果的重复测量模型,因为它适应动态波动
随着时间的推移这在老化中是常见的(例如,功能状态)。环境:维克森林医学院
是全国公认的老年医学研究的领导者,并提供了一个优秀的环境,
完成我的目标导师:我有一个优秀的跨学科指导团队,
他们致力于支持我完成研究和培训,
这是K25计划的目标。培训:我将完成旨在弥补培训差距的活动,
我的导师团队的指导我的培训目标是1)获得有关老年学的知识
2)加深我对缺失数据机制和技术的理解,3)了解
适当使用电子健康记录(EHR)数据用于研究目的,以及4)培养领导力,
网络,沟通和赠款写作技巧。为了实现这些目标,我将参加会议,
研讨会,期刊俱乐部,病例会议和写作研讨会,观察老年临床医生,并完成
课程作业K25补助金将允许我延长以前的培训,这将为我提供上级
知识,经验和技能,我的未来作为一个生物统计研究人员在老化。研究:早期
识别有跌倒风险的老年人至关重要,这样可以实施预防性护理计划,
改善患者的治疗效果,减轻医疗保健系统的负担。最新预测模型
无法处理随时间推移的重复测量,并且尚未与EHR数据一起使用。我建议用我的
BiMM森林方法开发了一个预测模型,随着时间的推移跌倒风险。我的研究目标是(1)
在健康、衰老和身体成分(健康ABC)研究中,用一种新的
机器学习方法(BiMM森林); 2)开发一个预测模型,用于识别老年人的风险,
福尔斯;以及3)评估使用EHR数据来外部验证预测模型的可行性。预测
本提案中开发的模型将有助于识别福尔斯的风险个体,使供应商能够
及早干预,以减轻福尔斯对患者、护理人员和医疗保健系统的负担。结果从这个
一笔赠款将为未来提交R 01提供基础,以进一步验证使用EHR数据的预测模型
从多个卫生保健中心,并评估该模型在实践中的临床效用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jaime Lynn Speiser其他文献
OpenClustered: an R package with a benchmark suite of clustered datasets for methodological evaluation and comparison
- DOI:
10.1186/s12874-025-02548-8 - 发表时间:
2025-04-10 - 期刊:
- 影响因子:3.400
- 作者:
Nathaniel Sean O’Connell;Jaime Lynn Speiser - 通讯作者:
Jaime Lynn Speiser
Jaime Lynn Speiser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jaime Lynn Speiser', 18)}}的其他基金
Development and Validation of a Prediction Model for Longitudinal Fall Risk in Older Adults
老年人纵向跌倒风险预测模型的开发和验证
- 批准号:
10430187 - 财政年份:2021
- 资助金额:
$ 11.54万 - 项目类别:
Development and Validation of a Prediction Model for Longitudinal Fall Risk in Older Adults
老年人纵向跌倒风险预测模型的开发和验证
- 批准号:
10215772 - 财政年份:2021
- 资助金额:
$ 11.54万 - 项目类别:
相似海外基金
Using pharmacoepidemiology to optimize antihypertensive medication use to prevent aging-related multimorbidity: Midcareer investigator award in patient-oriented research and mentoring.
利用药物流行病学优化抗高血压药物的使用,以预防与衰老相关的多发病:以患者为导向的研究和指导中的职业中期研究者奖。
- 批准号:
10572274 - 财政年份:2023
- 资助金额:
$ 11.54万 - 项目类别:
Midcareer award in aging-related subspecialty research
与衰老相关的专业研究中的职业生涯中期奖
- 批准号:
10570687 - 财政年份:2023
- 资助金额:
$ 11.54万 - 项目类别:
Academic Leadership Award for Statistical Training in Multidisciplinary Aging Research
多学科老龄化研究统计培训学术领导奖
- 批准号:
10427564 - 财政年份:2022
- 资助金额:
$ 11.54万 - 项目类别:
Mid-Career Mentoring Award in Palliative Care, Aging, and Cognitive Impairment
姑息治疗、老龄化和认知障碍领域的职业生涯中期指导奖
- 批准号:
10369952 - 财政年份:2022
- 资助金额:
$ 11.54万 - 项目类别:
Academic Leadership Award for Statistical Training in Multidisciplinary Aging Research
多学科老龄化研究统计培训学术领导奖
- 批准号:
10682601 - 财政年份:2022
- 资助金额:
$ 11.54万 - 项目类别:
Mid-Career Mentoring Award in Palliative Care, Aging, and Cognitive Impairment
姑息治疗、老龄化和认知障碍领域的职业生涯中期指导奖
- 批准号:
10683932 - 财政年份:2022
- 资助金额:
$ 11.54万 - 项目类别:
Prize 202209PJT - Yves Joannette Award of Excellence in Research in Aging: Can virtual navigation strategies predict polygenic risk of Alzheimer disease and cognitive decline?
奖 202209PJT - Yves Joannette 衰老研究卓越奖:虚拟导航策略能否预测阿尔茨海默病和认知能力下降的多基因风险?
- 批准号:
477695 - 财政年份:2022
- 资助金额:
$ 11.54万 - 项目类别:
Operating Grants














{{item.name}}会员




