Predicting Relapse at the Time of Diagnosis in Acute Lymphoblastic Leukemia

急性淋巴细胞白血病诊断时预测复发

基本信息

  • 批准号:
    10591509
  • 负责人:
  • 金额:
    $ 57.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY Relapse is the major cause of cancer related mortality in children with leukemia. Despite improvements in overall survival for children with B-cell progenitor acute lymphoblastic leukemia (ALL), for the 600 patients who will relapse each year, half will die of their disease. The high mortality of patients who relapse underscores the need for improved risk prediction and treatment strategies to prevent recurrent leukemia. Current approaches to relapse prediction are limited by insufficient accuracy, delayed prediction and the inability to make actionable treatment adjustments based on prediction information. To address these limitations, we applied a single-cell, high-parameter proteomic approach to ALL patient samples at the time of diagnosis, accurately predicting future relapse based on the presence of pre-B cells with activated signaling. This approach was 38% more accurate than standard of care relapse prediction methods. We propose that identifying relapse-predictive cells in ALL at the time of diagnosis using their distinguishing proteomic and genetic features will result in a clinical risk prediction model that is accurate, immediate, and actionable. This approach to relapse prediction will change the clinical paradigm of relapse risk in ALL to reduce the incidence of relapse itself. Using large multi-institutional, multimodal cohorts of molecularly and clinically annotated diagnostic patient samples, we will apply deep proteomic approaches to identify surface proteins uniquely expressed on relapse predictive pre-B cells enabling direct identification in a diagnosis sample. We will determine how genomic mutations associate with the presence of relapse predictive cells and examine their genomic mutational burden using single-cell exome sequencing. Finally, building on our data-driven, machine learning approaches, we will construct a diagnostic relapse predictor that is more accurate than standard of care models while informing on leukemia biology and targeted therapeutic options for patients at risk. This will enable a more precise approach to patient classification and treatment, reducing the number of children facing relapse and moving closer to precision medicine for children with ALL.
项目总结 复发是白血病儿童癌症相关死亡的主要原因。尽管有了改进 在600名儿童B细胞前体急性淋巴细胞白血病(ALL)患者的总存活率中 每年会复发的人,有一半会死于他们的疾病。复发患者的高死亡率凸显了 需要改进风险预测和治疗策略,以防止白血病复发。当前 复发预测的方法受到精度不足、预测延迟和无法预测的限制 根据预测信息进行可操作的治疗调整。为了解决这些限制,我们 在诊断时对所有患者样本应用了单细胞、高参数蛋白质组学方法, 根据激活信号的前B细胞的存在,准确预测未来的复发。这 与标准护理复发预测方法相比,该方法的准确率提高了38%。我们建议 利用其独特的蛋白质组学在诊断时识别所有复发预测细胞 基因特征将导致临床风险预测模型准确、即时和 有可诉性。这种预测复发的方法将改变所有复发风险的临床范例 减少复发本身的发生率。 使用大型多机构、多模式的分子和临床注释诊断队列 患者样本,我们将应用深层蛋白质组学方法来鉴定唯一表达在 复发预测性前B细胞能够在诊断样本中直接识别。我们将决定如何 基因组突变与复发预测细胞的存在相关并检查它们的基因组 利用单细胞外显子组测序的突变负荷。最后,在我们的数据驱动的机器学习的基础上 方法,我们将构建一个比标准护理更准确的诊断复发预测因子 模型,同时告知白血病生物学和针对高危患者的针对性治疗选择。这将是 实现更精确的患者分类和治疗,减少儿童面临的 复发,并向ALL儿童的精准药物靠拢。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kara Lynn Davis其他文献

Kara Lynn Davis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kara Lynn Davis', 18)}}的其他基金

Dissecting Single-cell Response or Resistance to Novel Combination Therapy in AML using Mass Cytometry
使用质谱流式细胞仪剖析 AML 中单细胞对新型联合疗法的反应或耐药性
  • 批准号:
    10383056
  • 财政年份:
    2021
  • 资助金额:
    $ 57.27万
  • 项目类别:
Predicting Relapse at the Time of Diagnosis in Acute Lymphoblastic Leukemia
急性淋巴细胞白血病诊断时预测复发
  • 批准号:
    10380688
  • 财政年份:
    2021
  • 资助金额:
    $ 57.27万
  • 项目类别:
Predicting Relapse at the Time of Diagnosis in Acute Lymphoblastic Leukemia
急性淋巴细胞白血病诊断时预测复发
  • 批准号:
    10210902
  • 财政年份:
    2021
  • 资助金额:
    $ 57.27万
  • 项目类别:
Single-cell High-dimensional Characterization of the Bone Marrow Microenvironment in Health and Disease
健康和疾病中骨髓微环境的单细胞高维表征
  • 批准号:
    9372908
  • 财政年份:
    2017
  • 资助金额:
    $ 57.27万
  • 项目类别:
Single-cell High-dimensional Characterization of the Bone Marrow Microenvironment in Health and Disease
健康和疾病中骨髓微环境的单细胞高维表征
  • 批准号:
    9524788
  • 财政年份:
    2017
  • 资助金额:
    $ 57.27万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 57.27万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.27万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 57.27万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.27万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 57.27万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.27万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 57.27万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 57.27万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 57.27万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.27万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了