Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
基本信息
- 批准号:10591577
- 负责人:
- 金额:$ 57.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffinityAgonistAmino AcidsBindingBinding SitesBlood flowBrainBrain InjuriesBrugada syndromeCaliforniaCalmodulinCardiacCardiovascular DiseasesChargeCollaborationsComplexCryoelectron MicroscopyDependenceDiabetes MellitusDiseaseDrug TargetingElectrophysiology (science)EnvironmentFamilyFamily memberFoundationsFunctional disorderFutureGlucoseHeartHomologous GeneHumanImmune responseIon ChannelIon Channel GatingIschemic StrokeKineticsKnowledgeLigand BindingLigandsLinkLiposomesMapsMetalsMissionMolecularMutagenesisMutationNon-Insulin-Dependent Diabetes MellitusObesityOutcomePharmaceutical PreparationsPharmacologyPharmacology StudyPhosphatidylinositol 4,5-DiphosphatePhysiologyPlayPolymersPropertyProteinsPublic HealthResearchResearch Project GrantsResolutionRestRoleSignal TransductionSiteSmooth Muscle MyocytesSpecificityStimulusStrokeStructureStructure of beta Cell of isletTRP channelTRPM5 geneTaste Bud CellTaste PerceptionTherapeutic AgentsUnited States National Institutes of HealthVascular Smooth MuscleWorkZebrafishanalogantagonistbasebrain tissuecerebral arteryconstrictiondesensitizationdrug actiondrug developmentexperimental studyimpaired glucose toleranceinhibitorinsightinsulin secretionmembernanodisknovel therapeuticsparticlepatch clamppharmacologicpreservationpressurereceptorreconstitutionsensorsmall moleculesuccesssweet taste perceptiontaste stimulitaste transductionvoltage
项目摘要
PROJECT SUMMARY
Blood flow from the heart to the brain is strictly regulated to protect the delicate brain tissue, because improper
blood flow can give rise to numerous cardiovascular diseases and brain injuries. TRPM4 is one of the major
actors regulating blood flow in the vascular smooth muscle cells in the cerebral arteries when intracellular
pressure changes. Mutation or dysfunction of TRPM4 is linked to numerous cardiovascular diseases,
including stroke and Brugada syndrome. TRPM4 and its closest homolog, TRPM5, are Ca2+-activated,
nonselective, voltage-gated ion channels. TRPM5 is highly expressed in pancreatic beta cells, and
dysfunction or mutation in TRPM5 is associated in type II diabetes and obesity. In addition, TRPM4 and
TRPM5 in the taste bud cells play an important role in taste signaling, and loss of both channels abolishes
the ability to detect bitter, sweet, or umami stimuli. Taken together, TRPM4 and TRPM5 have a wide range
of roles in physiology and pathophysiology.
Both TRPM4 and TRPM5 belong to the TRPM (melastatin-like transient receptor potential) subfamily of the
TRP superfamily, and they are the only two members impermeable to Ca2+. The lack of a canonical positively
charged voltage-sensing domain makes a mystery of how TRPM4 and TRPM5 sense voltage. Despite
sharing 45% amino acid identity, TRPM4 and M5 have distinct functional and pharmacological properties in
terms of kinetics and sensitivities to drugs. A collaboration has been built between Takeda California, Inc.
and our lab to study the important role of TRPM5 in treatment of diabetes. The high-affinity drugs specifically
targeting TRPM5 provided by Takeda and the potential future drug development strengthen our proposal on
studying the pharmacology of these two channels. At present, we do not understand, in molecular detail, how
the channels are activated in a voltage-dependent manner, how they are modulated by small molecules
binding to them at specific sites, how they are distinguished by various drugs, or how their channel functions
are modulated by other proteins such as calmodulin.
Building on the success of solving the first human TRPM4 structure in closed state, we propose to continue
the cryo-EM studies of TRPM4 and TRPM5 and their pharmacology, combined with complementary
electrophysiology experiments and collaboration with Takeda. The outcome of this proposal will define the
molecular basis for the voltage-dependent gating activity of these ion channels, for ligand recognition, and
for the action of modulators. These advances, in turn, will provide a foundation for developing new therapeutic
agents against cardiovascular diseases and diabetes and for a deeper understanding of the function of the
voltage-gated TRPM family members.
项目总结
从心脏流向大脑的血液受到严格控制,以保护脆弱的脑组织,因为
血液流动会导致许多心血管疾病和脑损伤。TRPM4是主要的
细胞内调节脑动脉血管平滑肌细胞内血流的因子
压力会发生变化。TRPM4的突变或功能障碍与许多心血管疾病有关,
包括中风和Brugada综合征。TRPM4及其最接近的同系物Trpm5被钙激活,
非选择性、电压门控离子通道。Trpm5在胰岛β细胞中高表达,并且
Trpm5功能障碍或突变与II型糖尿病和肥胖症有关。此外,TRPM4和
味蕾细胞中的Trpm5在味觉信号中起着重要的作用,这两个通道的丢失都被取消了
察觉苦味、甜味或鲜味刺激的能力。总而言之,TRPM4和TrPM5的范围很广
在生理学和病理生理学中的作用。
TRPM4和Trpm5都属于黑素样瞬时受体潜能(TRPM)亚家族。
Trp超家族,是目前仅有的两个不透钙的成员。缺乏一个积极的规范
带电的电压敏感区域使TRPM4和TrPM5如何感知电压成为一个谜。尽管
TRPM4和M5有45%的氨基酸同源性,具有不同的功能和药理特性
动力学术语和对药物的敏感性。武田加州公司之间已经建立了合作关系。
和我们的实验室研究Trpm5在糖尿病治疗中的重要作用。特别是高亲和力药物
针对武田提供的Trpm5和潜在的未来药物开发,加强了我们关于
研究这两个经络的药理作用。目前,我们还不清楚,在分子细节上,
通道是以电压依赖的方式激活的,它们是如何被小分子调制的
在特定位置与它们结合,它们如何被各种药物区分,或者它们的通道如何发挥作用
受钙调蛋白等其他蛋白质的调节。
在成功解决了第一个关闭状态下的人类TRPM4结构的基础上,我们建议继续
TRPM4和Trpm5的冷冻-EM研究及其药理作用
电生理学实验和与武田的合作。这项提案的结果将定义
这些离子通道的电压依赖门控活性的分子基础,用于配体识别,以及
用于调制器的动作。这些进展反过来将为开发新的治疗方法提供基础。
抗心血管疾病和糖尿病的药物以及更深入地了解
电压门控TRPM家族成员。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structures of the TRPM5 channel elucidate mechanisms of activation and inhibition.
- DOI:10.1038/s41594-021-00607-4
- 发表时间:2021-07
- 期刊:
- 影响因子:16.8
- 作者:Ruan Z;Haley E;Orozco IJ;Sabat M;Myers R;Roth R;Du J;Lü W
- 通讯作者:Lü W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Lu其他文献
Resolution Doubled Co-Prime Spectral Analyzers for Removing Spurious Peaks
用于消除杂散峰的分辨率加倍的共质光谱分析仪
- DOI:
10.1109/tsp.2016.2526964 - 发表时间:
2016-05 - 期刊:
- 影响因子:5.4
- 作者:
Yiwen Han;Ziyang Yan;Hongyu Xian;Wei Lu - 通讯作者:
Wei Lu
Wei Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Lu', 18)}}的其他基金
Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
- 批准号:
10421062 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10028649 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Structural and functional studies of CALHM channels
CALHM通道的结构和功能研究
- 批准号:
10573257 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10437844 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Structural and functional studies of CALHM channels
CALHM通道的结构和功能研究
- 批准号:
10155599 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10208911 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Structural and functional studies of CALHM channels
CALHM通道的结构和功能研究
- 批准号:
10350691 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
- 批准号:
10188631 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Structural and functional studies of the human TRPM4 and TRPM5 channels
人类 TRPM4 和 TRPM5 通道的结构和功能研究
- 批准号:
10033970 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
Elucidating structures and molecular mechanisms of Pannexin channels
阐明 Pannexin 通道的结构和分子机制
- 批准号:
10656392 - 财政年份:2020
- 资助金额:
$ 57.98万 - 项目类别:
相似国自然基金
Agonist-GPR119-Gs复合物的结构生物学研究
- 批准号:32000851
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
S1PR1 agonistによる脳血液関門制御を介した脳梗塞の新規治療法開発
S1PR1激动剂调节血脑屏障治疗脑梗塞新方法的开发
- 批准号:
24K12256 - 财政年份:2024
- 资助金额:
$ 57.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AHR agonistによるSLE皮疹の新たな治療薬の開発
使用 AHR 激动剂开发治疗 SLE 皮疹的新疗法
- 批准号:
24K19176 - 财政年份:2024
- 资助金额:
$ 57.98万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation of a specific LXR/PPAR agonist for treatment of Alzheimer's disease
特定 LXR/PPAR 激动剂治疗阿尔茨海默病的评估
- 批准号:
10578068 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别:
AUGMENTING THE QUALITY AND DURATION OF THE IMMUNE RESPONSE WITH A NOVEL TLR2 AGONIST-ALUMINUM COMBINATION ADJUVANT
使用新型 TLR2 激动剂-铝组合佐剂增强免疫反应的质量和持续时间
- 批准号:
10933287 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别:
Targeting breast cancer microenvironment with small molecule agonist of relaxin receptor
用松弛素受体小分子激动剂靶向乳腺癌微环境
- 批准号:
10650593 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别:
AMPKa agonist in attenuating CPT1A inhibition and alcoholic chronic pancreatitis
AMPKa 激动剂减轻 CPT1A 抑制和酒精性慢性胰腺炎
- 批准号:
10649275 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别:
A randomized double-blind placebo controlled Phase 1 SAD study in male and female healthy volunteers to assess safety, pharmacokinetics, and transient biomarker changes by the ABCA1 agonist CS6253
在男性和女性健康志愿者中进行的一项随机双盲安慰剂对照 1 期 SAD 研究,旨在评估 ABCA1 激动剂 CS6253 的安全性、药代动力学和短暂生物标志物变化
- 批准号:
10734158 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别:
Investigating mechanisms underpinning outcomes in people on opioid agonist treatment for OUD: Disentangling sleep and circadian rhythm influences on craving and emotion regulation
研究阿片类激动剂治疗 OUD 患者结果的机制:解开睡眠和昼夜节律对渴望和情绪调节的影响
- 批准号:
10784209 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别:
A novel nanobody-based agonist-redirected checkpoint (ARC) molecule, aPD1-Fc-OX40L, for cancer immunotherapy
一种基于纳米抗体的新型激动剂重定向检查点 (ARC) 分子 aPD1-Fc-OX40L,用于癌症免疫治疗
- 批准号:
10580259 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别:
Fentanyl Addiction: Individual Differences, Neural Circuitry, and Treatment with a GLP-1 Receptor Agonist
芬太尼成瘾:个体差异、神经回路和 GLP-1 受体激动剂治疗
- 批准号:
10534864 - 财政年份:2023
- 资助金额:
$ 57.98万 - 项目类别: