Molecular Mechanisms of Motility Deduced from in Vitro Reconstituted Microtubule- and Actin-Based Motor Complexes
从体外重建的基于微管和肌动蛋白的运动复合体推导出运动的分子机制
基本信息
- 批准号:10592401
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAdaptor Signaling ProteinAffectAmyotrophic Lateral SclerosisAnimalsAxonal TransportBindingBinding ProteinsBiochemicalBiologicalBiological ModelsBiological ProcessBiophysicsCell DeathCell PolarityCell physiologyCellsCollaborationsComplexCouplingCytokinesisCytoplasmDataDaughterDefectDependenceDynein ATPaseFailureFission YeastGenerationsGenetic MaterialsGeometryGoalsHuntington DiseaseHuntington geneIn VitroKinesinLightLiposomesMembraneMessenger RNAMicroscopyMicrotubule-Associated ProteinsMicrotubulesMitosisModelingMolecularMolecular MotorsMotionMotorMotor ActivityMyosin ATPaseMyosin Type IINeurodegenerative DisordersOrganellesOrganismOutcomeOutputPatternPhosphorylationPlayPloidiesProcessPropertyProteinsRoleScaffolding ProteinSpeedTechniquesVesicleanterograde transportbiophysical propertiesbiophysical techniquescell motilitycell typeconstrictiondevelopmental diseasedriving forcedynactininsightreconstitutionretrograde transportscaffoldsingle moleculetraffickingtransmission processtumorigenesis
项目摘要
Our overall approach is to focus on multi-component in vitro reconstitutions that will provide insight into complex
biological processes such as cargo transport and cytokinesis. Expressed proteins used in the reconstitutions will
be biochemically characterized, and single-molecule and biochemical/biophysical techniques will assess motor
function. Cytoplasmic dynein-1 and kinesins drive long-distance motion on microtubules, which is required for
cell polarity and function. Dynein moves to the minus-end of the polar MT and drives retrograde transport, while
kinesins of class 1, 2 and 3 power motion to the opposite plus-end and drive anterograde transport. The biological
cargoes of these motors include membrane-bound vesicles, organelles and mRNA. Defects in trafficking
contribute to developmental and neurodegenerative diseases (e.g. Huntington’s and amyotrophic lateral
sclerosis). Bidirectional motion of cellular cargoes as well as purified organelles are driven by motors of opposite
directionality in many organisms and cell types. Dynein requires both dynactin and an activating adaptor for full
motor activity, and these adaptors are emerging as scaffolds for coupling both dynein and kinesin motors. A
major goal is to build on our in vitro reconstituted complex containing dynein-dynactin, the adaptor protein
Bicaudal D, the mRNA-binding protein Egalitarian, and mRNA cargo by the addition of kinesin-1. Preliminary
data show that this complex recapitulates the bidirectional motion seen in the cell. We will use biophysical and
single molecule techniques (TIRF and iSCAT microscopy) to determine the stepping patterns and force
dependence of these complexes to understand how the motors co-ordinate and/or compete to achieve this
motion. We will determine if coupling dynein with different classes of transporting kinesins (kinesin-1, kinesin-2,
or kinesin-3) affects the outcome, and how microtubule-associated proteins (MAPs) regulate these transport
complexes. To generalize findings, we will reconstitute a dynein-kinesin-1 complex based on the scaffolding
protein huntingtin, because it plays a causative role in Huntington’s disease. A second goal is to further our
biochemical/biophysical characterization of fission yeast myosins involved in cytokinesis. A major driving force
for cytokinesis is the interaction between myosin and actin that powers constriction of the contractile ring. The
complexity of this process in animal cells has led to the use of fission yeast as a favored model system. To
propose a more detailed molecular mechanism for cytokinesis in fission yeast it is essential to have an in depth
characterization of the principal contractile components. Here we will use biochemical/biophysical techniques to
characterize the two class II myosins involved in cytokinesis (Myo2 and Myp2), and determine how light chain
phosphorylation regulates their speed and force output. Lastly, we will pursue via collaboration how track
geometry influences transport of cargo (liposomes) with bound myoVa and kinesin-1 on suspended actin and
microtubule tracks, which is relevant to both the initiation and termination of motility.
我们的总体方法是专注于多组分体外重组,这将提供复杂的见解
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATHLEEN M TRYBUS其他文献
KATHLEEN M TRYBUS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATHLEEN M TRYBUS', 18)}}的其他基金
Molecular Mechanisms of Motility Deduced from in Vitro Reconstituted Microtubule- and Actin-Based Motor Complexes
从体外重建的基于微管和肌动蛋白的运动复合体推导出运动的分子机制
- 批准号:
10133095 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Molecular Mechanisms of Motility Deduced from in Vitro Reconstituted Microtubule- and Actin-Based Motor Complexes
从体外重建的基于微管和肌动蛋白的运动复合体推导出运动的分子机制
- 批准号:
10368927 - 财政年份:2020
- 资助金额:
$ 39万 - 项目类别:
Structure and function of the Plasmodium myosin XIV-actin glideosome.
疟原虫肌球蛋白 XIV-肌动蛋白滑胶体的结构和功能。
- 批准号:
10650841 - 财政年份:2017
- 资助金额:
$ 39万 - 项目类别: