Structure and function of the Plasmodium myosin XIV-actin glideosome.
疟原虫肌球蛋白 XIV-肌动蛋白滑胶体的结构和功能。
基本信息
- 批准号:10650841
- 负责人:
- 金额:$ 66.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-11 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseActinsActomyosinAfricaAgeArtemisininsBindingBinding SitesBiologicalBiological AssayCell divisionCell physiologyCellsCellular biologyCessation of lifeChildComplexCryoelectron MicroscopyCrystallizationCulicidaeDevelopmentDrug resistanceErythrocytesFoundationsFutureGeneticGenetic studyGoalsHeartHumanIn VitroInvadedInvestigationKineticsLicensureLife Cycle StagesLightMalariaMalaria VaccinesMolecularMotionMotorMyosin ATPaseMyosin Type VN-terminalOrganellesParasitesParasitic infectionPathogenesisPharmaceutical PreparationsPhosphorylationPhosphorylation SitePlasmodiumPlasmodium falciparumPlayPositioning AttributePower strokeProcessPropertyReportingResearchRoleSexual DevelopmentSporozoitesStructureTissuesVaccinesVirulentWorkX-Ray Crystallographycell motilityconditional knockoutdruggable targetglobal healthimaging studyin vivoinhibitorinsightlive cell imagingmalaria infectionmutantmyosin VInew therapeutic targetnoveloptic trapoptical trapssmall molecule inhibitorsuperresolution imagingtooltraffickingvirtual
项目摘要
Malaria infection in humans, caused by single-celled parasites from the genus Plasmodium, is a major global
health challenge. Despite marked progress in the last 15 years, more than 400 million deaths occur worldwide
annually, the majority being children under age 5. Recent licensure of the first ever malaria vaccine heralds a
new era in efforts to control malaria, but the relatively modest efficacy of the RTS,S vaccine means that
complementary approaches will be essential if the WHO's goal of a 90% reduction in rates by 2030 is to be
realized. Malaria parasites are motile throughout their complex human and mosquito lifecycle. They move by a
process called gliding motility, which underpins their ability to reach, cross, and enter host tissues and cells.
Gliding is powered by a parasite actomyosin motor the disruption of which kills the infectious parasite. Towards
development of the parasite actomyosin motor as a druggable target, our collaborative team has worked to
characterize the essential class XIV single-headed myosin motor PfMyoA, the core of gliding motility. We were
the first to characterize and crystallize PfMyoA, demonstrating that its function is uniquely tuned by N-terminal
heavy chain phosphorylation. We were the first to show the essential role of PfMyoA and its essential light chain
in powering red blood cell (RBC) invasion, the stage responsible for all malaria pathogenesis. We have since
used PfMyoA mutants to reveal the energetic barriers necessary for RBC invasion using live cell imaging. These
foundations expertly position our team to extend investigation of gliding motility across the malaria lifecycle and
explore additional Plasmodium myosins and their cellular roles, which are the combined aims of this competitive
renewal. We propose (Aim 1) to define the cellular roles of PfMyoB versus PfMyoA by comparing structures,
functional properties, and the role of heavy chain phosphorylation in vitro and in vivo. Aim 2 proposes to
determine the binding pocket, mechanism of action, and impact on the parasite of two first-in-class small
molecule inhibitors of PfMyoA ATPase activity. Aim 3 investigates two other essential Plasmodium myosins
(PfMyoF and K), which are virtually unstudied both as motors and potential future druggable targets. PfMyoF
likely plays a role as a processive transporter, while PfMyoK likely functions during sexual development, with
motor domain inserts typical of reverse-directionality in eukaryotic class VI motors. We will use an integrative
approach highlighting in vitro functional assays (motility and ensemble force assays, optical trap assays, steady-
state and transient kinetics) and structural studies (X-ray crystallography and cryo-EM) together with live cell
approaches (including super resolution imaging) and genetic investigation of motors (conditional
knockouts/substitutions) in several stages of the Plasmodium parasite lifecycle. At completion we will have
developed a previously unattainable depth of understanding into the function of the essential Plasmodium
myosins as druggable targets, revealed profound insights into the structural basis by which myosins produce
force and motion, and discovered fundamental insights into malaria parasite cell biology.
由疟原虫属单细胞寄生虫引起的人类疟疾感染是全球性的重大疾病
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rapid tool for cell nanoarchitecture integrity assessment.
- DOI:10.1016/j.jsb.2021.107801
- 发表时间:2021-12
- 期刊:
- 影响因子:3
- 作者:Gaietta G;Swift MF;Volkmann N;Hanein D
- 通讯作者:Hanein D
Mechanism of small molecule inhibition of Plasmodium falciparum myosin A informs antimalarial drug design.
- DOI:10.1038/s41467-023-38976-7
- 发表时间:2023-06-12
- 期刊:
- 影响因子:16.6
- 作者:Moussaoui, Dihia;Robblee, James P.;Robert-Paganin, Julien;Auguin, Daniel;Fisher, Fabio;Fagnant, Patricia M.;Macfarlane, Jill E.;Schaletzky, Julia;Wehri, Eddie;Mueller-Dieckmann, Christoph;Baum, Jake;Trybus, Kathleen M.;Houdusse, Anne
- 通讯作者:Houdusse, Anne
The actomyosin interface contains an evolutionary conserved core and an ancillary interface involved in specificity.
- DOI:10.1038/s41467-021-22093-4
- 发表时间:2021-03-25
- 期刊:
- 影响因子:16.6
- 作者:Robert-Paganin J;Xu XP;Swift MF;Auguin D;Robblee JP;Lu H;Fagnant PM;Krementsova EB;Trybus KM;Houdusse A;Volkmann N;Hanein D
- 通讯作者:Hanein D
Plasmodium myosin A drives parasite invasion by an atypical force generating mechanism.
疟原虫肌球蛋白 A 通过非典型的力产生机制驱动寄生虫入侵。
- DOI:10.1038/s41467-019-11120-0
- 发表时间:2019
- 期刊:
- 影响因子:16.6
- 作者:Robert-Paganin,Julien;Robblee,JamesP;Auguin,Daniel;Blake,ThomasCA;Bookwalter,CarolS;Krementsova,ElenaB;Moussaoui,Dihia;Previs,MichaelJ;Jousset,Guillaume;Baum,Jake;Trybus,KathleenM;Houdusse,Anne
- 通讯作者:Houdusse,Anne
Tunneling Nanotubes and Gap Junctions-Their Role in Long-Range Intercellular Communication during Development, Health, and Disease Conditions.
- DOI:10.3389/fnmol.2017.00333
- 发表时间:2017
- 期刊:
- 影响因子:4.8
- 作者:Ariazi J;Benowitz A;De Biasi V;Den Boer ML;Cherqui S;Cui H;Douillet N;Eugenin EA;Favre D;Goodman S;Gousset K;Hanein D;Israel DI;Kimura S;Kirkpatrick RB;Kuhn N;Jeong C;Lou E;Mailliard R;Maio S;Okafo G;Osswald M;Pasquier J;Polak R;Pradel G;de Rooij B;Schaeffer P;Skeberdis VA;Smith IF;Tanveer A;Volkmann N;Wu Z;Zurzolo C
- 通讯作者:Zurzolo C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATHLEEN M TRYBUS其他文献
KATHLEEN M TRYBUS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATHLEEN M TRYBUS', 18)}}的其他基金
Molecular Mechanisms of Motility Deduced from in Vitro Reconstituted Microtubule- and Actin-Based Motor Complexes
从体外重建的基于微管和肌动蛋白的运动复合体推导出运动的分子机制
- 批准号:
10592401 - 财政年份:2020
- 资助金额:
$ 66.16万 - 项目类别:
Molecular Mechanisms of Motility Deduced from in Vitro Reconstituted Microtubule- and Actin-Based Motor Complexes
从体外重建的基于微管和肌动蛋白的运动复合体推导出运动的分子机制
- 批准号:
10133095 - 财政年份:2020
- 资助金额:
$ 66.16万 - 项目类别:
Molecular Mechanisms of Motility Deduced from in Vitro Reconstituted Microtubule- and Actin-Based Motor Complexes
从体外重建的基于微管和肌动蛋白的运动复合体推导出运动的分子机制
- 批准号:
10368927 - 财政年份:2020
- 资助金额:
$ 66.16万 - 项目类别:
Mutational Studies of Processive Myosin Motors
进行性肌球蛋白运动的突变研究
- 批准号:
7807806 - 财政年份:2009
- 资助金额:
$ 66.16万 - 项目类别:
MUTATIONAL STUDIES OF PROCESSIVE MYOSIN MOTORS
进行性肌球蛋白运动的突变研究
- 批准号:
7910491 - 财政年份:2007
- 资助金额:
$ 66.16万 - 项目类别:
Mutational Studies of Processive Myosin Motors
进行性肌球蛋白运动的突变研究
- 批准号:
9268016 - 财政年份:2007
- 资助金额:
$ 66.16万 - 项目类别:
Mutational studies of processive myosin motors
进行性肌球蛋白运动的突变研究
- 批准号:
8289420 - 财政年份:2007
- 资助金额:
$ 66.16万 - 项目类别:
Mutational studies of processive myosin motors
进行性肌球蛋白运动的突变研究
- 批准号:
8499349 - 财政年份:2007
- 资助金额:
$ 66.16万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 66.16万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 66.16万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 66.16万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 66.16万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 66.16万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 66.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 66.16万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 66.16万 - 项目类别:














{{item.name}}会员




