Maternal mHealth blood hemoglobin analysis with informed deep learning
通过知情深度学习进行孕产妇 mHealth 血液血红蛋白分析
基本信息
- 批准号:10566426
- 负责人:
- 金额:$ 47.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAfricanAlgorithmsAnemiaBiologicalBloodCellular PhoneClinicalClinical DataColorComplexComputational algorithmDataDevicesDiagnosisDiagnosticDiseaseElectronic Health RecordEnvironmentEquipmentEyelid structureFetal healthFoundationsGoalsHealth Services AccessibilityHealth TechnologyHemoglobinHemoglobin concentration resultHomeHyperbilirubinemiaIatrogenesisImageImpaired healthInfusion proceduresKenyaLaboratoriesLearningLightMachine LearningMalariaManualsMaternal HealthMeasuresMethodologyMethodsMobile Health ApplicationModelingMorbidity - disease rateOpticsOutcomeOxygenPainPatient CarePerformancePerfusionPeripheralPersonsPopulationPregnancyPregnant WomenProcessPublic HealthPulse OximetryRecoveryResearchResource-limited settingResourcesRuralSickle Cell AnemiaSiteSpectrum AnalysisStructure of palpebral conjunctivaTechnologyTelemedicineTestingTissuesTranslational ResearchWorkautomated algorithmbiomedical informaticsclinical practicecostdata acquisitiondeep learningdesigndigitaldigital healthelectronic health record systemhealth of the motherimplementation scienceimprovedinnovationlearning algorithmlow and middle-income countriesmHealthmachine visionmobile applicationmortalitynext generationpatient screeningpoint of carereconstructionremote patient monitoringsensorsignal processing
项目摘要
PROJECT SUMMARY/ABSTRACT
Blood hemoglobin (Hgb) testing is a common clinical laboratory test during routine patient care and screening.
In particular, blood Hgb tests are essential for the diagnosis and management of anemia. Globally, over 40% of
pregnant women are anemic, adversely affecting maternal and fetal health outcomes through increased
morbidity and mortality. A range of treatments for anemia are well-established and readily available even in
low- and middle-income countries. In these settings, the main challenge is that anemia is not detected or
detected too late. For pregnant women in resource-limited settings who require several Hgb tests during all
trimesters, conventional invasive blood Hgb tests are not only painful and iatrogenic, but are also expensive
and often inaccessible. Existing noninvasive devices and smartphone-based technologies for measuring blood
Hgb levels often rely on costly specialized equipment and complex smartphone attachments, thus hampering
practical translation from research to clinical practice in resource-limited settings. Based on the preliminary
results generated by our transdisciplinary team, we hypothesize that blood Hgb levels can be accurately and
precisely predicted from a red-green-blue (RGB) image of the inner eyelid (palpebral conjunctiva) acquired
using a smartphone camera with no additional attachments, and that this mobile health (mHealth) application
can be fully integrated with an existing electronic health record (EHR) system in low-resource settings.
Specifically, an informed learning approach will enable us to incorporate a physical or biological understanding
into the learning algorithms to overcome the limitations of purely data-driven machine learning. Our team,
consisting of experts in optical spectroscopy and machine learning, biomedical informatics and implementation
science, and maternal and public health, proposes three aims to achieve the project goals. In Aim 1, we will
develop a robust, simple, frontend data acquisition method for various mHealth and digital health settings. A
tissue-specific color gamut design and true color recovery will provide the first-of-its-kind systematic
methodology to realize color accuracy that will be highly sensitive to blood Hgb. In Aim 2, we will perfect the
core mHealth computational algorithm using clinical data of black African pregnant women. Sub-algorithms of
automated inner eyelid demarcation, advanced spectral learning, and blood Hgb content computation will
enable fully automated, highly accurate, and precise blood Hgb estimations. Tissue optics-informed spectral
learning will capture strong nonlinearity between RGB values and spectral intensity directly in the spectral
domain. In Aim 3, we will integrate mHealth blood Hgb technology with a widely used EHR and evaluate the
backend performance. The proposed connected mHealth technology will demonstrate the possibility of offering
mobility, simplicity, and affordability for rapid and scalable adaptation, maximizing the currently available
resources in resource-limited settings. Our work can also provide reciprocal innovation to offer advanced
mHealth and digital health technologies combined with telemedicine in rural and at-home settings in the US.
项目总结/摘要
血液血红蛋白(Hgb)检测是常规患者护理和筛查期间常见的临床实验室检测。
特别是,血液Hgb测试是必不可少的诊断和贫血的管理。全球超过40%的
孕妇贫血,对孕产妇和胎儿的健康结果产生不利影响,
发病率和死亡率。一系列治疗贫血的方法是完善的,即使在
低收入和中等收入国家。在这些情况下,主要的挑战是没有检测到贫血,
发现得太晚了。对于在资源有限的环境中需要在整个过程中进行多次Hgb测试的孕妇,
传统的侵入性血液Hgb测试不仅是痛苦的和医源性的,而且价格昂贵
而且常常难以接近。现有的非侵入性设备和基于智能手机的血液测量技术
Hgb水平通常依赖于昂贵的专门设备和复杂的智能手机附件,从而阻碍了
在资源有限的情况下,从研究到临床实践的实际翻译。根据初步
我们的跨学科团队得出的结果,我们假设血液Hgb水平可以准确且
从所获取的内眼睑(眼睑结膜)的红-绿-蓝(RGB)图像精确预测
使用没有附加附件的智能手机摄像头,这种移动的健康(mHealth)应用程序
可以在资源匮乏的环境中与现有的电子健康记录(EHR)系统完全集成。
具体来说,一个知情的学习方法将使我们能够纳入物理或生物的理解
学习算法,以克服纯粹数据驱动的机器学习的局限性。我们的团队,
由光谱学和机器学习、生物医学信息学和实施方面的专家组成,
科学、孕产妇和公共卫生,提出了实现项目目标的三个目标。在目标1中,我们
为各种移动医疗和数字医疗环境开发一种强大、简单的前端数据采集方法。一
组织特定的色域设计和真实色彩恢复将提供第一个同类系统
实现对血液Hgb高度敏感的颜色准确性的方法。在目标2中,我们将完善
核心mHealth计算算法使用非洲黑人孕妇的临床数据。子算法
自动内眼睑划分、高级光谱学习和血液Hgb含量计算将
实现全自动、高度准确和精确的血液Hgb估计。组织光学信息光谱
学习将直接在光谱中捕获RGB值和光谱强度之间的强非线性,
域在目标3中,我们将整合mHealth血液Hgb技术与广泛使用的EHR,并评估
后端性能。拟议的互联移动健康技术将展示提供以下服务的可能性:
移动性、简单性和经济性,可实现快速和可扩展的适应,最大限度地提高当前可用
在资源有限的情况下。我们的工作还可以提供互惠创新,
移动医疗和数字医疗技术与美国农村和家庭环境中的远程医疗相结合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Young L Kim其他文献
Association of Noninvasive Peripheral Blood Hemoglobin Assessments with Venous Blood Draws Among Sickle Cell Patients
- DOI:
10.1182/blood-2022-165132 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Sang Mok Park;Yuhyun Ji;Semin Kwon;Andrew RW O'Brien;Ying Wang;Young L Kim - 通讯作者:
Young L Kim
Dynamically controlled random lasing with colloidal titanium carbide MXene
使用胶体碳化钛 MXene 动态控制随机激光
- DOI:
10.1364/ome.398132 - 发表时间:
2020-09 - 期刊:
- 影响因子:2.8
- 作者:
Zhuoxian Wang;Shaimaa I Azzam;Xiangeng Meng;Mohamed Alhabeb;Krishnakali Chaudhuri;Kathleen Maleski;Young L Kim;Alex;er V Kildishev;Vladimir M Shalaev;Yuri Gogotsi;Alex;ra Boltasseva - 通讯作者:
ra Boltasseva
Remote Blood Hemoglobin Monitoring with Hyperspectral Color Truthing for Advancing Sickle Cell Care
- DOI:
10.1182/blood-2023-190659 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Sang Mok Park;Yuhyun Ji;Semin Kwon;Jung Woo Leem;Andrew Ross Wickman O'Brien;Ying Wang;Young L Kim - 通讯作者:
Young L Kim
Young L Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Young L Kim', 18)}}的其他基金
Risk stratification of malaria among school-age children with mHealth spectroscopy of blood analysis
利用血液分析的移动健康光谱对学龄儿童疟疾进行风险分层
- 批准号:
10527037 - 财政年份:2022
- 资助金额:
$ 47.86万 - 项目类别:
Risk stratification of malaria among school-age children with mHealth spectroscopy of blood analysis
利用血液分析的移动健康光谱对学龄儿童疟疾进行风险分层
- 批准号:
10704123 - 财政年份:2022
- 资助金额:
$ 47.86万 - 项目类别:
Laboratory test-comparable mobile assessments of hemoglobin for anemia detection
用于贫血检测的血红蛋白实验室测试可比移动评估
- 批准号:
9341800 - 财政年份:2017
- 资助金额:
$ 47.86万 - 项目类别:
Hotspot imaging for risk stratification of non-melanoma skin cancer in a pilot st
试点研究中用于非黑色素瘤皮肤癌风险分层的热点成像
- 批准号:
8010085 - 财政年份:2010
- 资助金额:
$ 47.86万 - 项目类别:
Hotspot imaging for risk stratification of non-melanoma skin cancer in a pilot st
试点研究中用于非黑色素瘤皮肤癌风险分层的热点成像
- 批准号:
8109402 - 财政年份:2010
- 资助金额:
$ 47.86万 - 项目类别:
相似海外基金
Tracing the African roots of Sri-Lanka Portuguese
追溯斯里兰卡葡萄牙语的非洲根源
- 批准号:
AH/Z505717/1 - 财政年份:2024
- 资助金额:
$ 47.86万 - 项目类别:
Research Grant
Bovine herpesvirus 4 as a vaccine platform for African swine fever virus antigens in pigs
牛疱疹病毒 4 作为猪非洲猪瘟病毒抗原的疫苗平台
- 批准号:
BB/Y006224/1 - 财政年份:2024
- 资助金额:
$ 47.86万 - 项目类别:
Research Grant
Commercialisation of African Youth Enterprise Programme
非洲青年企业计划商业化
- 批准号:
ES/Y010752/1 - 财政年份:2024
- 资助金额:
$ 47.86万 - 项目类别:
Research Grant
Resilient and Equitable Nature-based Pathways in Southern African Rangelands (REPAiR)
南部非洲牧场弹性且公平的基于自然的途径 (REPAiR)
- 批准号:
NE/Z503459/1 - 财政年份:2024
- 资助金额:
$ 47.86万 - 项目类别:
Research Grant
Evaluating the effectiveness and sustainability of integrating helminth control with seasonal malaria chemoprevention in West African children
评估西非儿童蠕虫控制与季节性疟疾化学预防相结合的有效性和可持续性
- 批准号:
MR/X023133/1 - 财政年份:2024
- 资助金额:
$ 47.86万 - 项目类别:
Fellowship
Understanding differences in host responses to African swine fever virus
了解宿主对非洲猪瘟病毒反应的差异
- 批准号:
BB/Z514457/1 - 财政年份:2024
- 资助金额:
$ 47.86万 - 项目类别:
Fellowship
The impact on human health of restoring degraded African drylands
恢复退化的非洲旱地对人类健康的影响
- 批准号:
MR/Y019806/1 - 财政年份:2024
- 资助金额:
$ 47.86万 - 项目类别:
Research Grant
CAREER: Habitability of the Hadean Earth - A South African perspective
职业:冥古宙地球的宜居性——南非的视角
- 批准号:
2336044 - 财政年份:2024
- 资助金额:
$ 47.86万 - 项目类别:
Continuing Grant
Nowcasting with Artificial Intelligence for African Rainfall: NAIAR
利用人工智能预测非洲降雨量:NAIAR
- 批准号:
NE/Y000420/1 - 财政年份:2024
- 资助金额:
$ 47.86万 - 项目类别:
Research Grant
Assessing the role of the lithospheric mantle during passive margin development - insights from the South Atlantic African margin
评估岩石圈地幔在被动边缘发育过程中的作用 - 来自南大西洋非洲边缘的见解
- 批准号:
2305552 - 财政年份:2024
- 资助金额:
$ 47.86万 - 项目类别:
Standard Grant