Risk stratification of malaria among school-age children with mHealth spectroscopy of blood analysis
利用血液分析的移动健康光谱对学龄儿童疟疾进行风险分层
基本信息
- 批准号:10527037
- 负责人:
- 金额:$ 17.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:15 year oldAcuteAfricaAfrica South of the SaharaAlgorithmsAndroidAnemiaArtemisininsBiomedical EngineeringBloodCause of DeathCellular PhoneChemopreventionChildChild HealthCollectionColorCombined Modality TherapyCommunity Health AidesComputational algorithmCountryDataData CollectionDiagnosisDiagnostic testsDoctor of PhilosophyElectronic Health RecordEyelid structureFeverGoalsHealthHealth TechnologyHealth care facilityHealthcare SystemsHemoglobinHemoglobin concentration resultHybridsInfectionInterventionInvestmentsLearningMachine LearningMalariaMalaria DiagnosisMalaria DiagnosticMass ScreeningMeasurementMeasuresMethodsMobile Health ApplicationModelingMolecularPaperParasitesPatientsPerformancePhasePlasmodium falciparumPlayPublic HealthRapid diagnosticsReadingReportingResearchResolutionResource-limited settingResourcesRiskRoleRwandaSchool-Age PopulationSchoolsSpectrum AnalysisStructure of palpebral conjunctivaSystemTelemedicineTest ResultTestingUndifferentiatedUniversitiesage groupassociated symptombaseclinically relevantcognitive enhancementcognitive functioncost effectivedeep learningdigitaleHealthempoweredhuman capitalimaging SegmentationimprovedmHealthmalaria infectionmalaria transmissionmobile applicationresponserisk stratificationscale upscreeningstandard of carestatistical learningtransmission process
项目摘要
PROJECT SUMMARY/ABSTRACT
Malaria is one of the most serious public health problems in sub-Saharan Africa. School-age children are most
commonly infected with malaria parasites with an estimated 200 million at risk. Malaria screening for school-
age children in endemic countries is critical in two aspects: malaria transmission and educational performance
(human capital investment). Malaria rapid diagnostic test (RDT)-based interventions have shown to be
effective, but mass screening with malaria RDTs on a routine basis is expensive and impractical. As a result,
school-age children are often excluded. In this respect, risk stratification (prescreening) for malaria RDTs can
play a critical role in the diagnosis and management of malaria. We hypothesize that a combination of blood
hemoglobin level and acute undifferentiated febrile illness assessments can risk-stratify school-age children
who will benefit from malaria RDTs and avoid unnecessary RDTs. Malaria infections in school-age children are
strongly associated with anemia. Thus, noninvasive blood hemoglobin level readings can be highly beneficial
for identifying asymptomatic (undetected) afebrile malaria infections. We will take advantage of our recently
developed mHealth method that can reliably predict blood hemoglobin levels from digital photographs of the
inner eyelid taken by a low-end smartphone. In Aim 1 (R21 phase), we will perfect an mHealth blood
hemoglobin computation algorithm applied to school-age children (6 to 15 years of age) in Rwanda. The
proposed machine learning approach will hybridize deep learning and statistical learning to accurately and
precisely measure blood hemoglobin content among school-age children using an unmodified smartphone. In
Aim 2 (R33 phase), we will develop an mHealth risk-stratification model to determine the need of malaria RDTs
among school-age children. We will investigate the added value of mHealth blood hemoglobin assessments in
identifying patients who will benefit from malaria RDTs and will need confirmatory malaria diagnosis. We will
further formulate an advanced risk-stratification model that can forecast molecular test-confirmed malaria. In
Aim 3 (R33 phase), we will implement an mHealth application integrating malaria risk stratification with the
existing electronic health record (EHR) system. We will incorporate the mHealth technology into an Android-
based EHR-integrated mobile application for community health workers (CHWs) and health facilities in our
study settings. We will also include a digital reporting platform to replace paper-based patient data collection
for CHWs and allow for automatic transmission into the currently used EHR system in our study settings. After
successful completion, we expect to improve malaria diagnosis and management among school-age children,
by empowering CHWs and health facilities with less hardware-dependent mHealth technologies. The proposed
data-driven and connected mHealth technologies can maximize the nationwide scale-up of cost-effective
malaria diagnosis and management in Rwanda, potentially offering mobility, simplicity, and affordability for
rapid and scalable adaptation in other resources-limited settings.
项目总结/摘要
疟疾是撒哈拉以南非洲最严重的公共卫生问题之一。学龄儿童最多
通常感染疟疾寄生虫,估计有2亿人处于危险之中。学校疟疾筛查-
在疟疾流行国家,15岁以下儿童在两个方面至关重要:疟疾传播和教育表现
(人力资本投资)。基于疟疾快速诊断测试的干预措施已被证明是有效的。
有效,但在常规基础上用疟疾RDT进行大规模筛查既昂贵又不切实际。因此,在本发明的一个方面,
学龄儿童往往被排除在外。在这方面,疟疾RDT的风险分层(预筛选)可
在疟疾的诊断和管理中发挥关键作用。我们假设血液和
血红蛋白水平和急性未分化发热性疾病评估可对学龄儿童进行风险分层
他们将受益于疟疾RDT并避免不必要的RDT。学龄儿童的疟疾感染是
与贫血密切相关。因此,非侵入性血液血红蛋白水平读数可以是非常有益的
用于识别无症状(未检测到)的无发热疟疾感染。我们将利用我们最近
开发的mHealth方法,可以可靠地预测血液血红蛋白水平的数字照片,
用低端智能手机拍摄的内眼睑在目标1(R21阶段),我们将完善mHealth血液
血红蛋白计算算法适用于卢旺达学龄儿童(6至15岁)。的
提出的机器学习方法将混合深度学习和统计学习,
使用未经改装的智能手机精确测量学龄儿童的血红蛋白含量。在
目标2(R33阶段),我们将开发一个移动健康风险分层模型,以确定疟疾RDT的需求
在学龄儿童中。我们将调查mHealth血液血红蛋白评估的附加值,
确定将从疟疾RDT中受益并需要确诊疟疾的患者。我们将
进一步制定一个先进的风险分层模型,可以预测分子检测证实的疟疾。在
目标3(R33阶段),我们将实施一个移动健康应用程序,将疟疾风险分层与
电子健康记录(EHR)系统。我们将把移动健康技术整合到一个安卓系统中-
基于EHR的集成移动的应用程序,适用于我们的社区卫生工作者(CHW)和卫生设施
研究设置。我们还将包括数字报告平台,以取代基于纸张的患者数据收集
并允许自动传输到我们的研究设置中当前使用的EHR系统。后
我们预期,如果该项目顺利完成,学龄儿童中疟疾的诊断和管理将得到改善,
为社区卫生工作者和卫生设施提供较少依赖硬件的移动医疗技术。拟议
数据驱动和互联的移动医疗技术可以最大限度地扩大全国范围内的成本效益
在卢旺达的疟疾诊断和管理,可能提供流动性,简单性和负担得起的,
在其他资源有限的环境中快速和可扩展的适应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Young L Kim其他文献
Association of Noninvasive Peripheral Blood Hemoglobin Assessments with Venous Blood Draws Among Sickle Cell Patients
- DOI:
10.1182/blood-2022-165132 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Sang Mok Park;Yuhyun Ji;Semin Kwon;Andrew RW O'Brien;Ying Wang;Young L Kim - 通讯作者:
Young L Kim
Dynamically controlled random lasing with colloidal titanium carbide MXene
使用胶体碳化钛 MXene 动态控制随机激光
- DOI:
10.1364/ome.398132 - 发表时间:
2020-09 - 期刊:
- 影响因子:2.8
- 作者:
Zhuoxian Wang;Shaimaa I Azzam;Xiangeng Meng;Mohamed Alhabeb;Krishnakali Chaudhuri;Kathleen Maleski;Young L Kim;Alex;er V Kildishev;Vladimir M Shalaev;Yuri Gogotsi;Alex;ra Boltasseva - 通讯作者:
ra Boltasseva
Remote Blood Hemoglobin Monitoring with Hyperspectral Color Truthing for Advancing Sickle Cell Care
- DOI:
10.1182/blood-2023-190659 - 发表时间:
2023-11-02 - 期刊:
- 影响因子:
- 作者:
Sang Mok Park;Yuhyun Ji;Semin Kwon;Jung Woo Leem;Andrew Ross Wickman O'Brien;Ying Wang;Young L Kim - 通讯作者:
Young L Kim
Young L Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Young L Kim', 18)}}的其他基金
Maternal mHealth blood hemoglobin analysis with informed deep learning
通过知情深度学习进行孕产妇 mHealth 血液血红蛋白分析
- 批准号:
10566426 - 财政年份:2023
- 资助金额:
$ 17.61万 - 项目类别:
Risk stratification of malaria among school-age children with mHealth spectroscopy of blood analysis
利用血液分析的移动健康光谱对学龄儿童疟疾进行风险分层
- 批准号:
10704123 - 财政年份:2022
- 资助金额:
$ 17.61万 - 项目类别:
Laboratory test-comparable mobile assessments of hemoglobin for anemia detection
用于贫血检测的血红蛋白实验室测试可比移动评估
- 批准号:
9341800 - 财政年份:2017
- 资助金额:
$ 17.61万 - 项目类别:
Hotspot imaging for risk stratification of non-melanoma skin cancer in a pilot st
试点研究中用于非黑色素瘤皮肤癌风险分层的热点成像
- 批准号:
8010085 - 财政年份:2010
- 资助金额:
$ 17.61万 - 项目类别:
Hotspot imaging for risk stratification of non-melanoma skin cancer in a pilot st
试点研究中用于非黑色素瘤皮肤癌风险分层的热点成像
- 批准号:
8109402 - 财政年份:2010
- 资助金额:
$ 17.61万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 17.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 17.61万 - 项目类别:
Operating Grants














{{item.name}}会员




