Development of GenomeBuild as a Universal Method to Synthesize Genomes
GenomeBuild 的开发作为合成基因组的通用方法
基本信息
- 批准号:10565058
- 负责人:
- 金额:$ 37.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-06 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AreaBacteriaBacterial GenomeBar CodesBase Pair MismatchCell LineCellsChromosome 22ChromosomesClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesComplementary DNAComplexCost SavingsCustomDNADNA Microarray ChipDNA SequenceDNA biosynthesisDNA-Directed DNA PolymeraseDevelopmentDevicesEnvironmental ScienceEquationExhibitsFDA approvedFundingGenesGeneticGenetic PolymorphismGenomeGenomicsGoalsGrantHCT116 CellsHerpesvirus 1Human ChromosomesHuman GeneticsHybridsImplantLaboratoriesLearningLengthLibrariesMammalian ChromosomesMarketingMedicineMethodologyMethodsMutationMycoplasma mycoidesNamesNucleic AcidsOligonucleotidesOncolytic virusesOrganismPeptide Nucleic AcidsPhasePopulationProcessProductionProtocols documentationProviderReportingResearchResearch PersonnelRoleS phaseSaccharomyces cerevisiaeSavingsSiteSolidSourceSynthesis ChemistryTechniquesTechnologyTelevisionTemperatureTherapeuticTimeViral GenomeVirusWhole OrganismWorkYeastsarmbasecolon cancer cell linecommercializationcostcost effectivedensitydesigndesign,build,testdigitalds-DNAgenome editinggenome-widehuman genomicsimprovedinsertion/deletion mutationmelanomameltingmonomernovelpreventrestriction enzymescale upscreeningsmall moleculesolid statesuccesssynthetic biologytherapeutic developmentwhole genome
项目摘要
Project Summary
Development of GenomeBuild as a Universal Method to Synthesize Genomes
Opportunity Number: RFA-HG-20-016
PIs: Christopher L. Warren and Mary S. Ozers
Synthetic biology encompasses the ability to de novo synthesize and assemble large oligonucleotides into
genomes of whole organisms, with a broad range of applications in medicine, therapeutics, environmental
sciences, and human genomics. However, the ability to realize the full potential of synthetic biology has been
hampered by the time and cost limitations of building synthetic genomes and large mammalian chromosomes
using current techniques. Additionally, there is no cost effective method to introduce extensive genetic edits
into genomes. The “Design-Build-Test-Learn-Repeat” approach is fundamental to synthetic biology but the
inability to “Build” quickly or cost-effectively inhibits our ability to “Learn,” much less “Repeat.” Furthermore,
with affordability, a diverse array of researchers can be included in this process, not only the most highly
funded laboratories and companies, to propel the field forward and maximize its gains. The ability to custom-
design an entire genome cannot be done with current genomic editing techniques such as CRISPR, and solid-
state synthesis methods on the genome scale are too expensive. In this proposal, we detail a novel method,
GenomeBuild, to inexpensively and rapidly synthesize a high fidelity and completely customizable viral
genome from a standard DNA microarray. As proof-of-principle, we will synthesize a modified form of the 150
kb HSV-1 genome that reproduces the genetic alterations designed in talimogene laherparepvec (TVEC).
TVEC, marketed under the brand name Imlygic™, is the first FDA approved oncolytic virus used for the
treatment of advanced melanoma. Although DNA microarrays can serve as a direct and inexpensive source for
a complex library of oligonucleotides, their high error-rate relative to solid phase synthesis have precluded their
effective use in synthetic biology. Our technology will circumvent this problem by harnessing an unprecedented
high-density peptide nucleic acid (PNA) array to remove imperfect DNA sequences obtained from a
corresponding DNA microarray. Our aims will synthesize high-fidelity microarray-extracted genomic
oligonucleotides that can be assembled into a modified viral genome with less than one error per 75 kb of
sequence on average. Finally, this custom genome will be introduced into a cell line using standard protocols
and assessed for infectivity as compared to a genetically equivalent non-synthesized virus. The inexpensive
cost and fast turnaround time of our GenomeBuild platform will allow production of >100 kb synthetic
oligonucleotides at a significant time and cost savings compared to commercially available products. Upon
successful development, the GenomeBuild technology can be extrapolated from these efforts to additional
organisms such as other viruses and bacteria with larger genomic sizes, making synthetic biology of whole
genomes, and human chromosomes, more attainable for any laboratory.
项目摘要
开发基因组建筑作为综合基因组的通用方法
机会编号:RFA-HG-20-016
PIS:Christopher L. Warren和Mary S. Ozers
合成生物学包括从头合成并组装大寡核苷酸的能力
整个生物体的基因组,在医学,治疗,环境中具有广泛的应用
科学和人类基因组学。但是,实现合成生物学的全部潜力的能力已经
受到建筑合成基因组和大型哺乳动物染色体的时间和成本限制的阻碍
使用当前技术。此外,没有具有成本效益的方法来引入广泛的遗传编辑
进入基因组。 “设计建造测试 - 与重复”方法是合成生物学的基础
无法快速或成本效率地“构建”会抑制我们“学习”的能力,更少的“重复”。此外,
有了可用性,可能包括一系列研究人员,不仅是最高的
资助实验室和公司,以推动该领域的前进并最大化其收益。定制的能力 -
设计当前的基因组编辑技术(例如CRISPR和固体)无法完成整个基因组
基因组量表上的状态合成方法太昂贵了。在此提案中,我们详细介绍了一种新颖的方法
基因组建筑,廉价,迅速地合成高保真度和完全可定制的病毒
来自标准DNA微阵列的基因组。作为原理证明,我们将合成150的修改形式
KB HSV-1基因组,该基因组重现了塔利莫烯laherparepvec(TVEC)中设计的遗传改变。
TVEC以品牌名称Imlygic™销售,是FDA批准的溶瘤病毒
尽管DNA微阵列可以作为直接且廉价的来源
一个复杂的寡核苷酸库,它们相对于固相合成的高误差已排除
有效地用于合成生物学。我们的技术将通过利用前所未有的
高密度肽核酸(PNA)阵列以去除从A的不完善的DNA序列
相应的DNA微阵列。我们的目标将综合高保真微阵列提取的基因组
可以组装成修饰的病毒基因组中的寡核苷酸,每75 kb少于一个误差
序列平均。最后,该自定义基因组将使用标准协议引入细胞系
与遗传等效的非合成病毒相比,评估了感染。便宜的
我们的基因组建平台的成本和快速周转时间将允许生产> 100 kb的合成时间
与市售产品相比,寡核苷酸在很大的时间和成本节省。之上
成功开发,基因组建技术可以从这些努力中推断出来
诸如其他病毒和具有较大基因组大小的细菌之类的生物,使整个生物学的合成生物学
基因组和人类染色体,对于任何实验室都可以实现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mary Szatkowski Ozers其他文献
Mary Szatkowski Ozers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mary Szatkowski Ozers', 18)}}的其他基金
SNAP-X: Development of a Mutagenesis Strategy and High Density Protein Array to Comprehensively Display Protein Variants
SNAP-X:开发诱变策略和高密度蛋白质阵列以全面展示蛋白质变体
- 批准号:
9923621 - 财政年份:2019
- 资助金额:
$ 37.68万 - 项目类别:
SNAP-X: Development of a Mutagenesis Strategy and High Density Protein Array to Comprehensively Display Protein Variants
SNAP-X:开发诱变策略和高密度蛋白质阵列以全面展示蛋白质变体
- 批准号:
10203604 - 财政年份:2019
- 资助金额:
$ 37.68万 - 项目类别:
Aptamer-Based Detection of Cardiac Biomarker Glycosylation States Using APT-SNAP
使用 APT-SNAP 基于适体的心脏生物标志物糖基化状态检测
- 批准号:
8648358 - 财政年份:2014
- 资助金额:
$ 37.68万 - 项目类别:
Aptamer-Based Detection of Cardiac Biomarker Glycosylation States Using APT-SNAP
使用 APT-SNAP 基于适体的心脏生物标志物糖基化状态检测
- 批准号:
8914454 - 财政年份:2014
- 资助金额:
$ 37.68万 - 项目类别:
High Density Peptide Arrays for Cancer-Related Post-Translational Modifications
用于癌症相关翻译后修饰的高密度肽阵列
- 批准号:
8738628 - 财政年份:2013
- 资助金额:
$ 37.68万 - 项目类别:
High Density Peptide Arrays for Cancer-Related Post-Translational Modifications
用于癌症相关翻译后修饰的高密度肽阵列
- 批准号:
8625055 - 财政年份:2013
- 资助金额:
$ 37.68万 - 项目类别:
High Throughput Method to Assess SNP Functionality in Prostate Cancer
高通量方法评估前列腺癌中的 SNP 功能
- 批准号:
8222682 - 财政年份:2011
- 资助金额:
$ 37.68万 - 项目类别:
Screening of FoxA1-ER-DNA disruptors for development of breast cancer therapeutic
筛选 FoxA1-ER-DNA 干扰物用于开发乳腺癌治疗药物
- 批准号:
8200699 - 财政年份:2011
- 资助金额:
$ 37.68万 - 项目类别:
High Throughput Method to Assess SNP Functionality in Prostate Cancer
高通量方法评估前列腺癌中的 SNP 功能
- 批准号:
8336846 - 财政年份:2011
- 资助金额:
$ 37.68万 - 项目类别:
Screening of glucocorticoid receptor small-molecule regulators using cognate site
使用同源位点筛选糖皮质激素受体小分子调节剂
- 批准号:
7671718 - 财政年份:2009
- 资助金额:
$ 37.68万 - 项目类别:
相似国自然基金
黏细菌模式菌株Myxococcus xanthus DK1622底盘3D基因组中的空间位置效应及其应用
- 批准号:32301220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水平基因转移对蓝细菌基因组演化及生态适应性的影响
- 批准号:32370009
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于基因组流行病学的耐多药结核病社区传播精准溯源及细菌学危险因素研究
- 批准号:82373641
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于微流控的高通量单细菌全基因组测序检测新方法研究
- 批准号:82372356
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
草地土壤、根际和菌丝际细菌基因组大小对氮、磷添加的响应规律研究
- 批准号:32301353
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
相似海外基金
Determining the molecular basis of gene silencing by MucR and defining its role in Brucella virulence
确定 MucR 基因沉默的分子基础并确定其在布鲁氏菌毒力中的作用
- 批准号:
10732605 - 财政年份:2023
- 资助金额:
$ 37.68万 - 项目类别:
Auto-antibodies as predictive markers for Post treatment Lyme Disease Syndrome
自身抗体作为治疗后莱姆病综合征的预测标记
- 批准号:
10737996 - 财政年份:2023
- 资助金额:
$ 37.68万 - 项目类别:
Evaluating the impact of human milk oligosaccharides on the vaginal microenvironment
评估母乳低聚糖对阴道微环境的影响
- 批准号:
10645794 - 财政年份:2023
- 资助金额:
$ 37.68万 - 项目类别:
Changes in Enteric Microbiota and Inflammation with HIV PrEP
HIV PrEP 引起的肠道微生物群变化和炎症
- 批准号:
10700595 - 财政年份:2023
- 资助金额:
$ 37.68万 - 项目类别:
Virulence of Staphylococcus aureus Corneal Infections
金黄色葡萄球菌角膜感染的毒力
- 批准号:
10656985 - 财政年份:2023
- 资助金额:
$ 37.68万 - 项目类别: